186 | III. Renormalization and Gauge Invariance
While the Faddeev-Popov argument is a lot slicker, many physicists still prefer the explicit
Feynman argument given in chapter II.7. I do. When we deal with the Yang-Mills theory
and the Einstein theory, however, the Faddeev-Popov method is indispensable, as I have
already noted.
A photon can find no rest
Let us understand the physics behind the necessity for imposing by hand a (gauge fixing)
constraint in gauge theories. In chapter I.5 we sidestepped this whole issue of fixing the
gauge by treating the massive vector meson instead of the photon. In effect, we changed
Q
μν
to (∂
2
+m
2
)g
μν
−∂
μ
∂
ν
, which does have an inverse (in fact we even found the inverse
explicitly). We then showed that we could set the mass m to 0 in physical calculations.
There is, however, a huge and intrinsic difference between massive and massless
particles. Consider a massive particle moving along. We can always boost it to its rest
frame, or in more mathematical terms, we can always Lorentz transform the momentum
of a massive particle to the reference momentum q
μ
= m(1, 0, 0, 0). (As is the case
elsewhere in this book, if there is no risk of confusion, we write column vectors as row
vectors for typographical convenience.) To study the spin degrees of freedom, we should
evidently sit in the rest frame of the particle and study how its states respond to rotation.
The fancy pants way of saying this is we should study how the states of the particle
transform under that particular subgroup of the Lorentz group (known as the little group)
consisting of those Lorentz transformations that leave q
μ
invariant, namely
μ
ν
q
ν
=q
μ
.
For q
μ
=m(1, 0, 0, 0), the little group is obviously the rotation group SO(3). We then apply
what we learned in nonrelativistic quantum mechanics and conclude that a spin j particle
has (2j + 1) spin states (or polarizations in classical physics), as already noted back in
chapter I.5.
But if the particle is massless, we can no longer find a Lorentz boost that would bring
us to its rest frame. A photon can find no rest!
For a massless particle, the best we can do is to transform the particle’s momentum to the
reference momentum q
μ
= ω(1, 0, 0, 1) for some arbitrarily chosen ω. Again, this is just
a fancy way of saying that we can always call the direction of motion the third axis. What is
the little group that leaves q
μ
invariant? Obviously, rotations around the third axis, forming
the group O(2), leave q
μ
invariant. The spin states of a massless particle of any spin around
its direction of motion are known as helicity states, as was already mentioned in chapter
II.1. For a particle of spin j , the helicities ±j are transformed into each other by parity
and time reversal, and thus both helicities must be present if the interactions the particle
participates in respect these discrete symmetries, as is the case with the photon and the
graviton.
1
In particular, the photon, as we have seen repeatedly, has only two polarization
degrees of freedom, instead of three, since we no longer have the full rotation group SO(3).
1
But not with the neutrino.