Industrial Wireless Communications Security (IWCS)/C42 28-3
Encryption. transforms. data. from. a. readable. form. to. a. nonreadable. form. for. humans.. e. key.
length.is.an.indicator.for.the.strength.of.the.encryption.algorithm..Examples.of.encryption.algorithms.
include.RC4.(Rivest.Cypher.4),.Data.Encryption.Standard.(DES),.Triple-DES,.Blowsh,.International.
Data.Encryption.Algorithm.(IDEA),.Soware-Optimized.Encryption.Algorithm.(SEAL),.RSA.(Rivest.
Shamir.Adelman),.and.RC4..Encryption.prevents.eavesdropping.of.wirelessly.transmitted.data.
Radio
.communications.are.subject.to.jamming.regardless.of.the.form.of.wireless.signal..APs.monitor.
channel.quality.and.bit.rate.for.other.stations,.which.enables.the.detection.of.jamming..However,.unless.
APs.have.collaborative.soware.for.sharing.and.analyzing.this.information,.the.location.of.the.attacker.
cannot.be.identied.
Wireless
.signals.radiate.in.free.space.and.are.subject.to.interception..Wireless.laptop.computers.placed.
near.industrial.enterprises.can.intercept.WLAN.signals,.collect.sensitive.information,.and.potentially.
disrupt.the.network.
Hijacking
.a.wireless.channel.is.a.dicult.task.because.the.attacker.must.ensure.that.the.two.par-
ties
.cannot.communicate.with. one.another. [7]..e.two.users. must.be. out.of.wireless.range.or.be.
.
desynchronized.to.set.up.a.man.in.the.middle.(MITM).attack..In.an.MITM.attack,.the.attacker.must.
eavesdrop.on.both.users.and.impersonate.each.user.to.the.other..One.MITM.attack.approach.would.be.
to.jam.the.receiver.of.one.user.using.a.directional.antenna.while.receiving.the.transmitted.trac.from.
another.user.
28.2.2 Security Mechanisms
Security.mechanisms.and.protocols.are.necessary.to.maintain.the.secrecy.of.data.transmitted.through.
the.air.and.to.ensure.that.the.data.is.not.tampered.with..Since.the.introduction.of.802.11.WLAN,.new.
protocols.have.been.developed.as.insecurities.were.found.in.existing.deployed.protocols.(WEP,.WPA,.
WPA2,.TKIP,.CCMP,.and.WAPI)..A.survey.of.these.protocols.follows.
28.2.2.1
Wireless Encryption Protocol
e
.rst.security.mechanism.for.WiFi.is.the.wireless.encryption.protocol.(WEP),.which.requires.little.
computational.power..WEP.is.based.on.the.RC4.encryption.algorithm.and.is.not.as.sophisticated.as.the.
cryptographic.protocols.that.follow..Researchers.demonstrated.the.insecurity.of.WEP.within.the.rst.
few.years.of.its.deployment.[8].
WEP
.uses.a.symmetric.secret.key.cipher,.k,.and.an.initialization.vector,.IV,.to.generate.a.keystream.
(a.pseudorandom.sequence.of.bits).as.shown.in.Figure.28.2.
e
.decryption.key.is.identical.to.the.encryption.key.in.symmetric.key.algorithms..WEP.is.not.scal-
able
.due.to.a.lack.of.automatic.key.management..e.key.is.either.64.or.128.bits..An.integrity.checksum.
is.computed.on.the.message/data.and.then.the.two.are.concatenated.to.create.a.plaintext..e.keystream.
is.mathematically.combined.(Exclusive.OR).with.the.plaintext.to.create.a.ciphertext..e.ciphertext.and.
IV.are.transmitted.between.a.sender.and.receiver..e.receiver.uses.the.identical.secret.key.to.recover.
the.message.from.the.ciphertext..RC4.was.developed.in.1987.by.Ron.Rivest.of.RSA.Security..e.process.
for.the.RC4.encryption.and.decryption.is.shown.in.Figure.28.3.
Plaintext
Ciphertext
Keystream
Plaintext XOR keystream
Message
RC4 (IV, k)
CRC|
IV
FIGURE 28.2 Encrypted.WEP.frame.
© 2011 by Taylor and Francis Group, LLC