244 BIBLIOGRAPHY
[36] W. Ren and W. E, “Heterogeneous multiscale method for the modeling of complex
fluids and micro-fluidics,” J. Comp. Phys., vol. 204, pp. 1–26, 2005.
[37] B. Schweizer, “ A well-posed model for dynamic contact angles,” Nonlinear Anal.
Theory Methods Appl., vol. 43, pp. 109–125, 2001.
[38] P. A. Thompson and M. O. Robbins, “Simulations of contact-line motion: Slip and
the dynamic contact angle,” Phys. Rev. Lett., vol. 63, pp. 766–769, 1989.
[39] P. A. Thompson and S. M. Troian, “A general boundary condition for liquid flow at
solid surfaces,” Nature, vol. 389, pp. 360–362, 1997.
[40] P. A. Thompson, W. B. Brinckerhoff and M. O. Robbins, “Microscopic studies of
static and dynamics contact angles,” J. Adhes. Sci. Technol., vol. 7, pp. 535–554,
1993.
[41] B. H. A. A. van den Brule, A. P. G. van Heel and M. A. Hulsen, “Brownian con-
figuration fields: A new method for simulating viscoelastic flow,” Macromol. Symp.,
vol. 121, pp. 205–217, 1997.
[42] G. Voth (eds), Coarse-Graining of Condensed Phase and Biomolecular Systems,
CRC Press, Taylor and Francis Group, 2009.
[43] H. Wang, Y. Bai, M. Xia and F. Ke, “Microdamage evolution, energy dissipation
and their trans-scale effects on m acroscopic failure,” Mechanics of Materials, vol.
38, pp. 57–67, 2006.
[44] X. P. Wang and Y. Wang, “The sharp interface limit of a ph ase field model for
moving contact line problem,” Methods and Applications of Analysis, vol. 14, pp.
287–294, 2007.
[45] B. I. Yakobson, C. J. Brabec, and J. Bernholc, “Nanomechanics of carbon tubes:
Instabilities b eyond linear response,” Phys. Rev. Lett., vol. 76, pp. 2511–2514, 1996.
[46] J. Z. Yang and W. E, “Generalized Cauchy-Born rules for elastic deformation of
sheets, plates, and rods: Derivation of continuum models from atomistic models,”
Phys. Rev. B, vol. 74, pp. 184110–184110-11, 2006.