496 BIBLIOGRAPHY
[10] W. E, T. Li and J. Lu, “Localized basis of eigen-subspaces and operator compres-
sion,” Proc. N atl. Acad. Sci. USA, vol. 107, pp. 1273-1278, 2010.
[11] W. E, T. Li and E. Vanden-Eijnden, “Optimal partition and effective dynamics of
complex networks,” Proc. Natl. Acad. Sci. USA, vol. 105, pp. 7907–7912, 2008.
[12] W. E, T. Li and E. Vanden-Eijnd en, “Variational model reduction,” in preparation.
[13] W. Gao, and W. E, “Orbital minimization with localization,” Discret. Contin. Dyna.
Sys. Ser. A, vol. 23, pp. 249–264, 2009.
[14] G. Golub, and C. Van Loan, Matrix Computation, The Johns Hopkins Univ. Press,
Baltimore, 1996.
[15] D. Gottlieb, and C. W. Shu, “On the Gibbs phenomenon and its resolution,” SIAM
Rev., vol. 39, pp. 644–668, 1997.
[16] O. H. Hald, P. Stinis “Optimal prediction and the rate of decay for solutions of the
Euler equations in two and three dimensions,” Proc. Nat. Acad. Sci. USA, vol. 104,
no. 16, pp. 6527–6553, 2007.
[17] E. G. Karpov, G. J. Wagner and W. K. Liu, “A Green’s function approach to
deriving wave-transmitting boundary conditions in molecular dynamics,” Int. J.
Numer. Meth. Engng., vol. 62, pp. 1250–1262, 2005.
[18] X. Li and W. E, “Variational boundary conditions for molecular dynamics simula-
tions of crystalline solids at finite temperature: Treatment of the thermal bath,”
Phys. Rev. B, vol. 76, no. 10, pp. 104107–104107-22, 2007.
[19] N. Marzari, and D. Vanderbilt, “Maximally localized generalized Wannier functions
for composite energy bands,” Phys. Rev. B, vol. 56, pp. 12847–12865, 1997.
[20] A.S. Monin and A.M. Yaglom, Statistical Fluid Mechanics, Vol. I: Mechanics of
Turbulence, Dover Publications; Dover Ed edition, 2007.
[21] Y. Saad, Numeri cal Methods for Large Eigenvalue Problems, Manchester Univ.
Press, Manchester, 1992.