424 BIBLIOGRAPHY
[31] T. Li, A. Abdulle and W. E, “Effectiveness of implicit metho ds for stiff stochastic
differential equations,” Comm. Comput. Phys. , vol. 3, no. 2, pp . 295–307, 2008.
[32] X. Li and W. E, “Variational boundary conditions for molecular dynamics simula-
tions of crystalline solids at finite temperature: Treatment of the thermal bath,”
Phys. Rev. B, vol. 76, no. 10, pp. 104107–104107-22, 2007.
[33] J.-L. Lions, Y. Maday, and G. Turinici. “R´esolution d´edp par un sch´ema en temps
parar´eel,” C. R. Acad Sci. Paris S´er. I Math, vol. 332, pp. 661–668, 2001.
[34] L. Maragliano and E. Vanden-Eijnden, “A temperature accelerated met hod for sam-
pling free energy and determin ing reaction pathways in rare events simulations”,
Chem. Phys. Lett., vol. 426, pp. 168-175, 2006.
[35] M. Parrinello and A. Rahman, “Crystal structure and pair potentials: A molecular
dynamics study”, Phys. Rev. Lett., vol. 45, pp.1196-1199, 1980.
[36] C. V. Rao and A. P. Arkin, “Stochastic chemical kinetics and the quasi-steady-state
assumption: Application to the Gillespie algorithm,” J. of Chem. Phys., vol. 118,
pp. 4999–5010, 2003.
[37] R.E. Rudd and J.Q. Broughton, “Atomistic simulation of mems resonators through
the coupling of length scales,” J. Modeling and Simulation of Microsystems, vol. 1,
pp. 29–38, 1999.
[38] R.E. Rudd and J.Q. Broughton, “Coarse-grained molecular d ynamics: Nonlinear
finite elements and finite temperature”, Phys. Rev. B, vol. 72, 144104–144104-32,
2005.
[39] H. Salis, Y. Kaznessis, “Accurate hybrid sto chastic simulation of a system of coupled
chemical or biochemical reactions,” J. Chem. Phys., vol. 122, pp. 054103–054103-13,
2005.
[40] A. Samant and D. G. Vlachos, “Overcoming stiffness in stochastic simulation stem-
ming from partial equilibrium: A multiscale Monte Carlo algorithm,” J. Chem.
Phys., vol. 123, pp. 144114–144114-8, 2005.