BIBLIOGRAPHY 391
[43] P. B. Ming and X. Yue, “Numerical methods for multiscale elliptic problems,” J.
Comput. Phys., vol. 214, pp . 421–445, 2006.
[44] J.D. Moulton, J.E. Dendy and J.M. Hyman, “The black box multigrid numerical
homogenization algorithm,” J. Comput. Phys., vol. 141, pp. 1–29, 1998.
[45] N. Neuss, W. J¨ager, G. Wittum, “Homogenization and multigrid,” Computing, vol.
66, no. 1, pp. 1–26, 2001.
[46] J. Nolen, G. Papanicolaou and O. Pironneau, “A framework for adaptive multiscale
methods for elliptic problems,” Multiscale Model. Simul., vol. 7, pp. 171–196, 2008.
[47] J.T. Oden and K.S. Vemaganti, “Estimation of local modeling error and goal-
oriented adaptive modeling of heterogeneous materials; Part I: Error estimates and
adaptive algorithms,” J. Comput. Phys., vol. 164, pp. 22–47, 2000.
[48] A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differenti al
Equations, Oxford University Press, 1999.
[49] E. Ramm, A. Hund and T. Hettich, “A variational multiscale model for compos-
ites with special emphasis on the X-FEM and level sets,” Proc. EURO-C 2006, G.
Meschke, R. de Borst, H. Mang, N. Bicanic eds., 2006.
[50] M. Sahimi, Flow and Transport in Porous Medi a and Fractured Rock, John Wiley,
1995.
[51] G. Sangalli, “Capturing small scales in elliptic problems using a residual-free bubbles
finite element method,” Multiscale Model. Simul., vol. 1, pp. 485–503, 2003.
[52] C. Schwab and A.-M. Matache, “Two-scale FEM for homogenization problems,”
Mathematical Modellin g and Nume rical Simulation in Continuum Mechanics Conf.
Proc., Yamaguchi, Japan, 2000; Lecture Notes in Comp. Sci. and Engrg., I. Babuska,
et.al (eds.), Springer-Verlag, 2002.
[53] G. Strang and G.J. Fix, An Analysis of the Finite Element Method, Wellesley-
Cambridge, 2nd ed., 2008.
[54] S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic
Properties, Springer-Verlag, New York, 2002.