230 Combustion Instabilities
[10] L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, Oxford, 1987).
[11] J. K. Bechtold and M. Matalon, Hydrodynamic and diffusion effects on the
stability of spherically expanding flames, Combust. Flame 67, 77–90 (1987).
[12] D. Bradley, Instabilities and flame speeds in large-scale premixed gaseous ex-
plosions, Philos. Trans. R. Soc. London A 357, 3567–3581 (1999).
[13] P. Clavin, Dynamic behaviour of premixed flame fronts in laminar and turbulent
flows, Prog. Energy Combust. Sci. 11, 1–59 (1985).
[14] D. Bradley and C. M. Harper, The development of instabilities in laminar
explosion flames, Combust. Flame 99, 562–572 (1994).
[15] D. Bradley, Flame propagation in a tube: The legacy of Henri Gu
´
enoche,
Combust. Sci. Technol. 158, 15–33 (2000).
[16] G. Jomaas, C. K. Law, and J. K. Bechtold, On transition to cellularity in ex-
panding spherical flames, J. Fluid Mech. 583, 1–26 (2007).
[17] D. Bradley, R. A. Hicks, M. Lawes, C. G. W. Sheppard, and R. Woolley, The
measurement of laminar burning velocities and Markstein numbers for iso-
octane air and iso-octane-n heptane mixtures at elevated temperatures and
pressures in an explosion bomb, Combust. Flame 115, 126–144 (1998).
[18] D. Bradley, M. Lawes, and M. S. Mansour, Explosion bomb measurements of
ethanol-air laminar gaseous flame characteristics at pressures up to 1.4 MPa,
Combust. Flame 156, 1462–1470 (2009).
[19] D. Bradley, C. G. W. Sheppard, R. Woolley, D. A. Greenhalgh, and R. D.
Lockett, The development and structure of flame instabilities and cellularity at
low Markstein numbers in explosions, Combust. Flame 122, 195–209 (2000).
[20] L. Filyand, G. I. Sivashinsky, and M. L. Frankel, On self-acceleration of outward
propagating wrinkled flames, Physica D 72, 110–118 (1994).
[21] Yu. A. Gostintsev, A. G. Istratov, and Yu. V. Shulenin, Self-similar propagation
of a free turbulent flame in mixed gas mixures, Combust. Explos. Shock Waves
24, 563–569 (1988).
[22] D. Bradley, T. M. Cresswell, and J. S. Puttock, Flame acceleration due to flame-
induced instabilities in large-scale explosions, Combust Flame 124, 551–559
(2001).
[23] V. Karlin and G. Sivashinsky, Asymptotic modelling of self-acceleration of
spherical flames, Proc. Combust. Inst. 31, 1023–1030 (2007).
[24] I. R. Hurle, R. B. Price, T. M. Sugden, and A. Thomas, Sound emission from
open turbulent premixed flames, Proc. R. Soc. London A 303, 409–427 (1968).
[25] G. A. Batley, A. C. McIntosh, and J. Brindley, Baroclinic distortion of laminar
flames, Proc. R. Soc. London A 452, 199–221 (1996).
[26] G. H. Markstein, in Non-Steady Flame Propagation, AGARDograph 75
(Pergamon, Oxford, 1964).
[27] D. P. J. McCann, G. O. Thomas, and D. H. Edwards, Gas dynamics of vented
explosions. Part 1: Experimental studies, Combust. Flame 59, 233–250 (1985).
[28] H. Gu
´
enoche, in G. H. Markstein, (ed.), Non-Steady Flame Propagation,
AGARDograph 75 (Pergamon, Oxford, 1964), Chap. E, pp. 107–181.
[29] Lord Rayleigh (John William Strutt), The explanation of certain acoustic phe-
nomena, Nature (London) 18, 319–321 (1878).
[30] Lord Rayleigh (John William Strutt), The Theory of Sound (Dover, New York,
1945), Vol. II.
[31] A. P. Dowling and S. Hubbard, Instability in lean premixed combustors, Proc.
Inst. Mech. Eng. A 214, 317–332 (2000).
[32] A. S. Al-Shahrany, D. Bradley, M. Lawes, K. Liu, and R. Woolley, Darrieus–
Landau and thermoacoustic instabilities in closed vessel explosions, Combust.
Sci Technol. 178, 1771–1802 (2006).
[33] A. S. Al-Shahrany, D. Bradley, M. Lawes, and R. Woolley, Measurement of
unstable burning velocities of iso-octane-air mixtures at high pressure and
the derivation of laminar burning velocities, Proc. Combust. Inst. 30, 225–232
(2005).