52
CHAPTER
2.
NUNIERICAL
INTEGRATION.
BONDS.
2.1.
SOLUTIONS
TO
CHAPTER
2
EXERCISES
53
Problem
9: Assume
that
the
continuously compounded instantaneous in-
terest
rate
curve has
the
form
(
~
~
0.05.
__\
~({\
t)飞叮
十
I
100
十丁一
IUU
I
e
一
I
\V
忡忡
2.5 disc(l) + 2.5 disc(2) + 2.5 disc(3) + 102.5 disc(4)
99.267508.
口
For
the
zero rates given in this problem,
the
corresponding value of
the
par
yield is C = 0.05566075,i.e. ,
5.566075%.
口
r(t)
=
0.05
十
0.0051
泣。
+
t)
, V
t
三
O.
Problem
10:
The
yield of a semiannual coupon
bond
with
6%
coupon
rate
and
30
months
to
maturity
is
9%.
What
are
the
price,
duration
and convexity
of
the
bond?
(i)
Find
the
correspondi
吨
zero
rate
curve;
(ii)
Compute
the
6-month,
12-mo
时
h
,
18-month, and 24-month discount fac-
tors;
(iii)
Find
the
price of a two year semiannual coupon bond with coupon
rate
5%.
nu
>
vv
TT
p''Ifo
l--t
,
TLV
nU
Solution:
The
price, duration,
and
convexity of
the
bond
can be obtained
from
the
yield y of
the
bond as follows:
B
=
兰
3
仪
p(
一到十川
p(
补
1
f
ι3i
(i
\5
(5\
飞
一
I
) :
:-
exp I
-~y
I + 103
~exp
I
-~y
I I
B\
仨
t
2
飞
2
07
}
~
~
2\
2'-'
} J
1
(~9i
(i
\25
(5\1
=一
I
)
~
VA"
exp
(一
~y)
+ 103
-A~
exp
(一
~y
) I. (2.12)
B\
仨
t
4
飞
2
07
} ' - - -
4\
2'"
} J
The
data
below refers
to
the
pseudocode from Table 2.7 of
[2]
for computing
the
price, duration and convexity of a bond given
the
yield of
the
bond.
Input:η=
5;
y = 0.09;
Lcash_flow =
[0.5
1
1.
5 2 2.5];
v
一
cash_
自
ow
=
[3
3 3 3
103]
.
Output:
bond
price B = 92.983915, bond duration D = 2.352418, and bond
convexity
C =
5.736739.
口
(2.10)
Solution:
(i) Recall
that
the
zero
rate
curve
r(O
,
t)
can
be
obtained from
the
instanta-
neous interest
rate
curve
r(t)
as follows:
D
41·A
,,
l
‘\
Then
,
叫
OJ ) = ;
才
f
庐扣
t
、
h0ω05
十
0ωO
∞
0
臼阳川叫
5
盯协
ln(
丑叫(川
)
;(0
阳+
0ω0
∞阳
0
l
丑
(ο1
+
t)
)
0.045 +
0.005(1
十
t)
(ii)
The
6
咄
onth
,
12-month, 18-month,
and
24-month discount factors are,
respectively,
disc(l)
disc(2)
disc(3)
disc(4)
e-
r
(O
,
O.5)O.5
_ 0.97478242;
e-
r
(O
,
l)
- 0.94939392;
e
-r(O
,1.
5)
1.
5
二
0.92408277
;
已
-r(O
,
2)2
- 0.89899376.
Problem
11:
The
yield of a
14
months quarterly
coupo
且
bond
with
8%
coupon
rate
is
7%.
Compute
the
price, duration,
and
convexity of
the
bond.
Solution:
The
quarterly bond will pay a cash flow of
1.
75
in
2, 5, 8, and
11
months, and will pay
10
1.
75
at
maturity
in 14 months.
The
formulas for
the
price,
duration
,
and
convexity of
the
bond in
terms
of
the
yield y of
the
bond
are similar
to
those from (2.10-2.12). For example,
the
price of
the
bond can
be
computed as follows:
(
2\(
5\/
民\
B =
1.
75
exp I -
~-"y
I +
1.
75
exp I -
~-"y
I +
1.
75
exp I -
~-"y
I
飞
12'-'
J
飞
12'-'
J \
12'-'
J
(
11\(
14\
+1.
75
exp
I
一
~~y
I +
10
1.
75
exp I -
-,,-
y I
飞
12'"
J
飞/
(iii)
The
price of
the
two year semiannual coupon
bond
with
5%
coupon
rate
IS
0.05
~({\
(\
,,\{\
"
0.05
一
~I{\
1\
0.05
β:
刁
-100e-r(O?05)05
十一
~V
100
e-
r
(O
,I)
+
丁一
100
e-
咐1.
5)
1.
5
2