2.1. PREFERENTIAL STRUCTURES 79
Proof A E A~ra ~ a E A A A C_ Mc A a ~_ fz4(A ). If a E A, then a r r
V < a,i >E N.?b( b 9 A A ~#(< b,# >9 N A < b,# > ~ < a,i >) ). bEK~,~
~#( < b,i[ >9 N A < b,i~ > -~ < a,i > ). Thus, ifa 9 A, a r f~(A)
V < a, i >E N.~b( b 9 A A b 9 I(~,~ ) ~ Yi 9 I~(I(~,~ M A ~ 9). Finally, A E A~ [a
a 9 A A A C Mz A a f[f~(A) ~ a E A A m C_Mc A Vi 9 I~(I(~,~nAr ~)
a9 A, A 9 A~co ~ A 9 A~co~a. []
Corollary 2.88 Let 3d, M ~ be given. Then Va 9 Mc ( .A~ [a = A~c~, [a )
f~= f~,.
Proof By Lemma 2.87, Ay~a = A~ [a, likewise for Adz. Now, f:~ = f~,
Aff[a = A~'[a For the converse, note that f~(A) = {a 9 A: A r Aft[a}
Lemma 2.89 Given K-'-7 = {Kt~ : a 9 Mz} such that all K:t~ C 7)(Me), there is
a cpm M :-~ M~7 such that No = Mc and for all a 9 Mc Az,~ [a = A~c~ [a.
Proof We have to construct ~ =< N, I,-~>. Assume without loss of gen-
erality KI~ = {Kl~,i: i < a~}. Let M0 := {a E Mz : a~ = 0} (i.e. ~I~ = 9),
M1 := {a c ~VZc : ~ = 1 A a s K~,o}, M~ := ML - (M0 U M1). For ~ E M~, set
/3~ := a~, for a E/1//0 U M1, set/?~ := 2. Set N := {< a, i >: i </3~, a E Me} and
[ := sup{fl~ : a E Mz;}, so No = Mz;.
ForaEMo, set <m,j > -~ < a,i> for allj<t3~,i</3~,mCaand <a,j >
-.4 < a,i > for all j < /3~, i < 3~, j r i.
ForaEM~,set <m,j>-~ <a,i> for allj<~3,~,i<fl~,mCa, mE Kl~,o
and < a,j > -~ < a,i > tbr all j < A, i < ~ j r i (recollect: a E K/~,o).
For a E M2, set < m,j > -~ < a,i > for all j < fl,~, i < /3a, m r a, m E KI~,i
and < a,j > -~ < a,i > for all j < fl~, i </?~, j r i, if a E Kf~,~ (note that then
~ = c~ > 1, as a E M2).
It is easy to see that -~ is non-reflexive, and that .M is full in the sense of Definition
2.92 below. We have to show that for all a E Mc A~c,, Ia = A~c~ [a.
Case 0, a ~ Mo: A~c,o = Ao = ;c'(ML) and A~c,o [a ~ {A _C Mz : a ~ A}.
For
a E Mo, ICy {K~, "'~
= It,,~} = {Me}. Thus, A~c~ra = {A c_ Mc: a E A A
AnMzCO}={ACMc: aEA}.
Case 1, a 9 M~: K:~ ~t4 = {I(~M0, It'~,a~l} = {I(1~,0} --- K:I~.
Case 2, a 9 M~: Zy = {~r(~,~ : i < Zo = ~} = ~C/o.
Lemma 2.90 Let K, ]Cl C 7)(Mz).
a) A~:, _c A~: ~ VK E ~3KI E K/(Ir _~ K).
b) Arc, r a c A~c [a ~ VI( E ~.(a ~_ [( -+ 3I(I ~ ]Cl([(l C_ ]()).
Proof We show b), the proof of a) is similar.
"-~": Let K E K, a ~_ If. So CK = Mc - l( ~_ A~c [a, so by A~o [a C A~: [a,
CK r M~:,Ia ~ (as a E CK) 3I(] E K](CK n K/= (~), thus K/C K.
"~": Let A E A~:,ra. Thus a E A A Vt(I E K.I(AnKI ~ ~). Let K E/~, we have
to show A n K ~ (~. Case 1: a E K, then A C? K ~ 9, as a E A. Case 2: a r K,
so there is KI such that Kr C K. As K/M A r (~, K n A r (~. []