
2.1. PREFERENTIAL STRUCTURES 59
Proof "~": Letm ~,y~2, so-~yVxl,- y, but thenxj~ y.
"~--": Let x J,-~ z, m ~ ~. Consider y := --x V z. Then -~y V x = -,(--x V z) V z =
(:~ A -.~)
v ~ = z I'-" z, so --.y v :~ I~ -.x v ~ = ~,so ~ t= ~,--,x v ~, thn~ ,~ ~ z.
Define now x ~ zy :~ -~y ~ -,x and x </y
:~--~
-~y < ~x (both <, < in the sense
of Definition 2.6). By Fact 2.7, 3c) and 8c) (in R!) < t is total and transitive,
moreover x < ly ~-~ y ]s Ix.
We conclude by showing m ~ X ~ m ~ ~, where X :-- {z} U {y : -,z < ~y}.
Case 1: x I" 2-. Then x ~ 2_ by consistency preservation, so re(x) = re(X) =
m(~) = ~. Case 2: xlr 2_. But now-~y < z ~xV-~y]--, y, thus-,x <~y
x V -~y ]~ y, so X = ~, and we conclude by above Fact.
The rank
This might be the right place to shortly mention another order defined in [LM92],
the order by rank of a formula in a database, measuring exceptionality.
Definition 2.31 Let a conditional knowledge base K be given, i.e. a set of
~f~ ;~I,, c~,9 ~ z;.
a) c~ is called exceptional for K, iff K preferentially entails true ]~ -,or. c~ I~ fl is
called exceptional for K, iff c~ is exceptional for K. E(K) is the set of al~ fl E K
exceptional for K,
b) Ca := I(, C~+, := E(C,), Cx := N{Cp: p < A} for limit A.
c) If a is exceptional for all C,, we set rk(c~) := co (where co > p for "all"
ordinals p). Otherwise, set rk(c~) := r iff ~- is least such that c~ is not exceptional
for C,.
We note the following result, whose part b) uses notation and a theorem of
[LM921.
Fact 2.32 a) 1. If r'k(c~ V ~) < co, then o~ <LM ~ --~ rlc(c~) < rk(fl). 2. Thus
< ~ ~ ~k(~) < rk(Z). 3. Usually, rk(~) < ~k(~) ~ ~ <s,/~.
b) If It" is admissible, then rk(c~) < 'r'k(/3) in It" ~/3 < c~ in I(.
Proof a) 1.: CTk(~v~) ~ c~ V fli ~-, =~ (where ~ means: preferentially entails).
We first show CTk(~vp) ~ true
j~
--/3: Let m E ix(true). Case 1: m ~ c~ V/5,
then m G ff(c~Vfl), so m ~ ~Z- Case 2: m ~ c~ Vfl, so m ~ -~fl. Now,
rk(c~ V fl) = min(rka,r'kfl). If" rk/~ < rka, then rk(a V r = rkfl. But C~kz ~=
true],,~ -~fl. Contradiction.
3.: Consider the model rot/ ~ c~,/?, rm ~ -,c h -,/~, m ~ o~,--fl with mz ~ rnH.
Then true[,,, -,fl, true[@ -~c~, c~ V fl[Ir ~fl. Thus rka = 0, rk/? > 0, a eLM /3-
b)
"--,": Let rk be defined in If. 'r'ka < rk~ ~ rk(c~ V fl) = min(rkc~, r'k~) = 'r'kc~ <
r'kfl = rk((crV~) A~) ~ cr V/31~ ?i-~fl --~ a <LM /3 in I(. Suppose c~Vfll,-~ NZ.
Then either