52
CHAPTER 2. PREFERENTIAL STRUCTURES
and rn/f is minimal. So by rankedness, rn/1 -4 rn, but ca/i ~ -7, ca E #(5 V 3')
Contradiction.
Consider rn ~ a, rnl ~ -~a, fl,--'7 with ca~ -4 rn.
Then rn E #(c, V 7), cat E #(5 V/3).
7) c) a
~fl <-~ -+
a <3`:
We first show it does not hold in P:
Consider mo > 5, fl,7, ca* ~ -~c~,-~fl,7, ca2 > a, ~fl, 7 with ca1 -4 cao. Then
c~ V fl r~r -~a, -,/3,/3 v 3,1r J-,/3 v -7 I~ -,/3, but a V -7 [r -~c~.
We now argue in R:
1.5 v -7 Ir _L: 5 < 3, -~ ca(3,) r
2. 5V-71~ -~a: Case 1: a ~/3 by 5V/?l~ 2_: Then m(c~) = (~, thus aV-vi~ -~5.
Case 2: aV/3{Vt _L, c,V/3[9 t -~a,-7/3. Let ca E #(eV-7), ca ~ 5. There is
cao E #(c~ V/3), rno ~/3, so cao ~/3 V 7. Thus, there is ca~ ~ cao, ca~ ~ 7 A -,/3.
rnt --4 ca is impossible, as ca1 ~ 3`. By rankedness, ca -4 rno. Contradiction.
Consider rno ~ fl, m~ ~ 3' A -~fl with ca~ -4 cao.
s) a) 5<9<_3,-~
a<-~:
The counterexample of 7) b) shows it does not hold for P. In R: If/3 < 3', it is 2)
b), if/3 ~ 3', it is 7) b).
8) b) c, _</3 < 3, + e<-7:
The counterexample for P is in 7) c). In R: If ~ </3: 2) b), if c~ --~/3: 7) c).
S) c) c~ < ~ <-7 --, ~ <_3`:
The countere• for P:
Consider rno ~ -~a, fl,7, ca1 ~ 5,-n/3, ~7, ca2 ~ ct,/3,-"3' with
'm~ -4 rno.
Then
~v/31r -~/~, 3,v/31r -,-7, ~ v-rl~ -,3`, 5 v-71r _L. So/3 r ~, v r -7 < ~, ar, d
thus a < ~ < 3,, but a 2; -7-
In
R: The cases follow from 2) h), 7) a)-c).
9) a) -r,,~ ~ < ~ -~ c~ v-r </3:
The counterexample fbr P is in 7) c): There 5 ~-,/3 < "7, but
aV/VVV,
1r -~(c~VIV) =
-~a A-~3, so c~v/3 r -7.
In tg: a ~"7 --+ (by 6) a) c~V"7 ~ a. 5 </3, c~V"7 ~ 5 --* (by 7) c) c~V3` </3.
9) b) ~ ~ a <
,~' --,
a </3 A -'3`:
A Counterexample for P:
ca0 ~ a,/3,"7, ml ~- -~,/3, 3,, m2 ~ e,/3,"7, m3 ~ -~a,/3, -~3, with ml -4 To,
,~ -<
~. Then ~v/31r Z,
5v/31~
-~,
5v"71r
~,-,,r.
But 5V(/VA-,"7)tr -~.
In
R:
c~ </3, 5 ~'7 -+ "7 < 3 by 7) c). By 6) b) then/3 A-,3` ~-, /3, so 5 < /5 A-~'y by 7)
b).
10) < is modular:
< is not necessarily modular in P:
Consider cao ~ ~,fl,"7, 'rnl ~ 5,-,/3,-~-y, can ~ 5,-~fl, "7 with ,rq -< cao. Then
/3 < ~: 5 V/3 }~ ~/3. But neither/3 < ~ nor "7 < a: /3 V "71r -~/3, "7 V a 1r -,'~.
We now work in R:
Let/3 < c,,/3 ;~ 7, we show 3` < c~. Case 1: 3' < fl, then -7 < c~ by 2) b), Case 2:
q,r so/3~3,. So "7<c~by7) c). []