c04 JWPR067-Mench January 28, 2008 17:28 Char Count=
190 Performance Characterization of Fuel Cell Systems
14. M. L. Perry, J. Newman, and E. J. Cairns, “Mass Transport Gas-Diffusion Electrodes: A Diag-
nostic Tool for Fuel-Cell Cathodes”, J. Electrochem. Soc., Vol. 145, p. 5, 1998.
15. C. Boyer, S. Gamburzev, O. Velev, S. Srinivasan, and A.J. Appleby, “Measurements of Proton
Conductivity in the Active Layer of PEM Fuel Cell Gas Diffusion Electrodes,” Electrochim.
Acta, Vol. 43, p. 3703, 1998.
16. J. Scott, The Development and Operation of a 466 cm
2
Direct Methonol Fuel Cell, M. S. Thesis,
The Pennsylvansa State University, University Park, PA, 2002.
17. M. F. Mathias, J. Roth, J. Fleming, and W. Lehnert, “Diffusion Media Materials and Charac-
terization,” In Handbook of Fuel Cells—Fundamentals, Technology and Applications,Vol.3,
W. Vielstich, A. Lamm, and H. A. Gasteiger, Eds., Wiley, New York, 2003, pp. 517–537.
18. J. Kim, S-M. Lee., S. Srinivasan, and C. E. Chamberlin, “Modelling of Proton Exchange Mem-
brane Fuel Cell Performance Using An Empirical Equation,” J. Electrochem. Soc., Vol. 142, No.
6, pp. 1895–1901, 1995.
19. F. Laurencelle, R. Chahine, J. Hamelin, T. K. Bose, and A. Laperriere, “Characterization of a
Ballard MK5-E Proton Exchange Membrane Stack,” Fuel Cells, Vol. 1, No. 1, pp. 66–71, 2001.
20. J. Larmine and A. Dicks, Fuel Cell Systems Explained, 2nd ed., Wiley, New York, 2003.
21. E. C. Kumbur, K. V. Sharp, and M. M. Mench, “Liquid Droplet Behavior and Instability in a
Polymer Electrolyte Fuel Cell Flow Channel,” J. Power Sources, Vol. 161, pp. 335–345, 2006.
22. N. Q. Minh and T. Takahashi, Science and Technology of Ceramic Fuel Cells, 2nd ed., Elsevier,
New York, 2005.
23. R. Doshi, V. L. Richards, J. D. Carter, X. Wang, and M. Krumpelt, “Development of Solid-Oxide
Fuels That Operate at 500
◦
C,” J. Electrochem. Soc., Vol. 146, No. 4, pp. 1273–1278, 1999.
24. J. M. Ralph, C. Rossignol, and R. Kumar, “Cathode Materials for Reduced-Temperature SOFCs,”
J. Electrochem. Soc., Vol. 150, No. 11, pp. A1518–A1522, 2003.
25. T. Hibino, A. Hashimoto, T. Inoue, J. Tokuno, S. Yoshida, and M. Sano, “Single-Chamber
Solid Oxide Fuel Cells at Intermediate Temperatures with Various Hydrocarbon-Air Mixtures,”
J. Electrochem. Soc., Vol. 147, No. 8, pp. 2888–2892, 2003.
26. O. Yamamoto, “Low Temperature Electrolytes and Catalysts,” In Handbook of Fuel
Cells—Fundamentals, Technology and Applications, Vol. 4, W. Vielstich, A. Lamm, and H.
A. Gasteiger, Eds.,Wiley, New York, 2003, pp. 1002–1014.
27. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, 2nd ed., Wiley, New York,
2002.
28. M.-K. Song, Y.-T. Kim, J. M. Fenton, H. R. Kunz, and H.-W. Rhee, “Chemically-Modified
Nafion
R
/Poly(vinylidene fluoride) Blend Ionomers for Proton Exchange Membrane Fuel Cells,”
J. Power Sources, Vol. 117, pp. 14–21, 2003.
29. M. Watanabe, H. Uchida, Y. Seki, M. Emori and P. Stonehart, “Self-Humidifying Polymer
Electrolyte Membrane for Fuel Cells,” J. Electrochem. Soc., Vol. 143, pp. 3847–3852, 1996.
30. A. Parthasarathy, S. Srinivasan, A. J. Appleby, and C. Martin, “Temperature Dependence of the
Electrode Kinetics of Oxygen Production of the Platinum/Nation
R
Interface-A Microelectrode
Investigation,” J. Electrochem. Soc., Vol. 139, pp. 2530–2537, 1992.