200
III,§2,2
_ N2
F(r, s, t)
L(L2 - M2)(pL1 + 2aL,M, + TM;)
(2.33)
when V, is generic.
2°) If V, is generic (No # 0; HL2L1 + 2HLML,M, + MM2M2
0 for
HQ = 0), then
MR° =
[!w
+ arctan F(r, s,
t)]([ ] is the integer part).
(2.34)t)]
In
3°) The function (2.20) is defined on V,.
Proof of 1°).
Formula (2.11)2, where F = 0 (remark 2.1), justifies the
definition (2.32) of r. By (2.2) and (2.10),
A,(pL2 + 2oL,M, + TM2) = 2n[L1NL2 + 2L,M,NLM + M2 NM2]
2 N
= 2n
ds2
= 0.
Proof of 2°). The apparent contour of V1.
Differentiating (2.32) gives
d'P+(pL1 +aM,)ds+M,dr=dI +(aL, +TM,)ds-L,dr
= 0 mod dR
by (2.10) and definition (2.1) of p, a, T. Whence by (2.21)
L
dR A w2 A cu3 = G(s, t, 'P)ds A dr n dt,
Rsin0
where
(2.35)
2
G(s,t,'F) =
HQ[L(pL2
+ 2aL,M, + TM1)sin'P + L2 N0M2cos'If
since dR =
RHQLLdt
mod(dL, dM), that is, modds. By 1°) and lemma 2.1,
the function G: V, - $ is defined and regular on V, Thus, by lemma I of
§1, the apparent contour ER° of V, is given by the equation
ER,,: tan 'P + F(r, s, t) = 0.
Calculation of mR°.
The same calculation used to deduce (2.35) from
(2.21) enables us to deduce the formula
L
dR A (a3 A 0), = Gyi(s, t,'P)ds A dr n dt
R sin 0