The Dynamics of Systems of Interacting Rigid Bodies 7
-23
References
[1] Abraham, R. and Marsden, J.E. (1985). Foundations of Mechanics. Addison-Wesley, Reading, MA.
[2] Abraham, R., Marsden, J.E., and Ratiu, T. (1988). Manifolds, Tensor Analysis and Applications.
Applied Mathematical Sciences. Springer-Verlag, Heidelberg.
[3] Armstrong-Helouvry, B., Dupont, P., and Canudas de Wit, C. (1994). A survey of models, analysis
tools and compensation methods for the control of machines with friction. Automatica, 30, 7,
1083–1038.
[4] Arnold, V.I., Kozlov, V.V., and Neishtadt, A.I. (1988). Mathematical Aspects of Classical and Celestial
Mechanics. Springer-Verlag, Vol. 3.
[5] Arnold, V.I. (1966). Sur la Geometrie Differentielle des Groupes de Lie de Dimension Infinie
et ses Applications a l’ Hydrodynamique des Fluides Parfait. Ann. Inst. Fourier. Grenoble 16, 1,
319–361.
[6] Arnold, V.I. (1978). Mathematical Methods of Classical Mechanics. Springer-Verlag, Heidelberg.
[7] Barraquand, J. and Lacombe, J.C. (1989). On nonholonomic mobile robots and optimal maneuver-
ing. Proceedings of the IEEE International Symposium on Intelligent Control, 25–26 September 1989,
pp. 340–347.
[8] Barraquand, J. and Lacombe, J.C. (1991). Nonholonomic multibodv mobile robots: Controllability
and motion planning in the presence of obstacles. Proceedings of the IEEE International Conference
on Robotics and Automation, 2328–2335.
[9] Bloch, A. , Reyhanoglu, M, and McClamroch, N.H. (1992). Control and stabilization of nonholo-
nomic dynamic systems.” IEEE Transactions on Automatic Control, 37, Il, 1746–1757.
[10] Bloch, A. and McClamroch, N.H. (1989). Control of mechanical systems with classical nonholo-
nomic constraints. Proceedings of the 28th IEEE Conference on Decision and Control, 201–205.
[11] Bloch, A., McClamroch, N.H., and Reyhanoglu M. (1990). Controllability and stabilizability of a
nonholonomic control system. Proceedings of the 29th IEEE Cotiference on Decision and Control,
1312–1314.
[12] Boothby, W.M. (1986). An Introduction to Differentiable Manifolds and Riemannian Geometry.
Academic Press, New York.
[13] Brickell, F. and Clark, R.S. (1970). Differentiable Manifolds. Van Nostrand Reinhold.
[14] Burke, W. (1976). Applied Differential Geometry. Cambridge University Press, Cambridge.
[15] Canudas de Wit, C. and Sordalen, O.J. (1992). Exponential stabilization of mobile robots with
nonholonomic constraints. IEEE Transactions on Automatic Control, 13, 11, 1791–1797.
[16] Chen, C.K. and Sreenath , N. (1993). Control of coupled spatial two-body systems with nonholo-
nomic constraints. Proceedings of the 32nd IEEE Conference on Decision and Control, 949–954.
[17] Goldstein, B. (1944). Mechanics. Quart. Appl. Math., 2, 3, 218–223.
[18] Greenwood, D.T. (1965). Principles of Dynamics. Prentice Hall, NJ, 229–274.
[19] Gurvits, L. and Li, Z. (1993). Smooth time-periodic feedback solutions for nonholonomic motion
planning. In: Nonholonomic Motion Planning, Z. Li and J. Canny, eds, Kluwer, Dordretch, 53–108.
[20] Hoffmann, B. (1944). Kron’s Method of Subspaces. Quart. Appl. Math., 2, 3, 218–223.
[21] Hussein, N.M. and Kane, T.R. (1994). Three dimensional reorientation maneuvers of a system of
interconnected rigid bodies. J. Astron. Sci., 42, 1, 1–25.
[22] Kozlov, V.V. (1982). Dynamical systems with nonintegrable restrictions I. (Engls. Transl.). Mosc.
Univ. Mech. Bull., 37, 3–4, 27–34.
[23] Kozlov, V.V. (1982). Dynamical systems with nonintegrable restrictions II. (Engls. Transl.). Mosc.
Univ. Mech. Bull., 37, 3–4, 78–80.
[24] Kozlov, V.V. (1983). Dynamical systems with nonintegrable restrictions III. (Engls. Transl.). Mosc.
Univ. Mech. Bull., 38, 3, 27–34.
[25] Kozlov, V.V. (1983). Realization of nonintegrable constraints in classical mechanics. (Engls. Transl.).
Soviet Phys. Dokl., 28, 9, 735–737.
[26] Krishnaprasad, P.S. and Yang, R. (1991). Geometric phases, anholonomy, and optimal movement.
Proceedings of the IEEE International Conference on Robotics and Automation, 2185–2189.