6
-30 Robotics and Automation Handbook
[3] Kane, T.R., Analytical Elements of Mechanics, vol. 1, Academic Press, New York, 1959.
[4] Kane, T.R., Analytical Elements of Mechanics, vol. 2, Academic Press, New York, 1961.
[5] Kane, T.R. and Levinson, D.A., Formulation of equations of motion for complex spacecraft, J. Guid.
Contr., 3, 99, 1980.
[6] Roberson, R.E. and Schwertassek, R., Dynamics of Multibody Systems, Springer-Verlag, Berlin, 1988.
[7] Shabana, A.A., Dynamics of Multibody Systems, John Wiley & Sons, New York, 1989.
[8] Schiehlen, W. (ed.), Multibody Systems Handbook, Springer-Verlag, Berlin, 1990.
[9] Amirouche,F.M.L., Computational Methods in MultibodyDynamics, Prentice Hall, Englewood Cliffs,
New Jersey, 1992.
[10] Orlandea, N., Chace, M.A., and Calahan, D.A., A sparsity-oriented approach to the dynamic analysis
and design of mechanical systems, part I and II, J. Eng. Ind., 99, 773, 1977.
[11] Haug, E.J., Nikravesh, P.E., Sohoni, V.N., and Wehage, R.A., Computer aided analysis of large scale,
constrained, mechanical systems, Proc. 4th Int. Symp. on Large Engrg. Systems, Calgary, Alberta,
1982, 3.
[12] Schiehlen, W.O. and Kreuzer, E.J., Symbolic computational derivations of equations of motion, Proc.
IUTAM Symp. on Dyn. of Multibody Sys., Munich, 1977, 290.
[13] Rosenthal, D.E. and Sherman, M.A., High performance multibody simulations via symbolic equa-
tion manipulation and Kane’s method, J. Astro. Sci., 34, 223, 1986.
[14] Schaechter, D.B. and Levinson, D.A., Interactive computerized symbolic dynamics for the dynami-
cist, Proc. Amer. Contr. Conf., 1988, 177.
[15] Mitiguy, P.C. and Banerjee, A.K., A constraint force algorithm for formulating equations of motion,
Proc. First Asian Conf. on Multibody Dynamics, 2002, 606.
[16] Lesser, M., A geometrical interpretation of Kane equations, Proc. Royal Soc. London Ser. A - Math.,
Phy., Eng. Sci., Royal Soc. London, London, 1992, 69.
[17] Van Woerkom, P.Th.L.M., De Boer, A., Ellenbroek, M.H.M., and Wijker, J.J., Developing algo-
rithms for efficient simulation of flexible space manipulator operations, Acta Astronautica, 36, 297,
1995.
[18] Piedboeuf, J.-C., Kane’s equations or Jourdain’s principle? Proc. 36th Midwest Symp. on Circuits and
Sys., IEEE, 1993, 1471.
[19] Kane, T.R., Teaching of mechanics to undergraduates, Int. J. Mech. Eng. Ed., 6, 286, 1978.
[20] Kane, T.R. and Levinson, D.A., DYNAMICS: Theory and Applications, McGraw-Hill, New York,
1985.
[21] Kane, T.R., DYNAMICS, Holt, Rinehart and Winston, New York, 1968.
[22] Mitiguy, P.C and Kane, T.R., Motion variables leading to efficient equations of motion, Int. J. Robotics
Res., 15, 522, 1996.
[23] Scheinman, V.D., Designof a computercontrolledmanipulator, Engineerthesis, StanfordUniversity,
Stanford, 1969.
[24] Kane, T.R. and Levinson, D.A., The use of Kane’s dynamical equations in robotics, Int. J. Robotics
Res., 2, 3, 1983.
[25] Wampler, C.W., A comparative study of computer methods in manipulator kinematics, dynamics,
and control, Ph.D. thesis, Stanford University, Stanford, 1985.
[26] Kane, T.R., Ryan, R.R., and Banerjee, A.K., Dynamics of a cantilever beam attached to a moving
base, J. Guid., Contr., Dyn., 10, 139, 1987.
[27] Buffinton, K.W., Dynamics of beams moving over supports, Ph.D. thesis, Stanford University,
Stanford, 1985.
[28] Wampler, C.W., Buffinton, K.W., and Jia, S.H., Formulation of equations of motion for systems
subject to constraints, J. Appl. Mech., 52, 465, 1985.
[29] Ryan, R.R., Flexibility modeling methods in multibody dynamics, Ph.D. thesis, Stanford University,
Stanford, 1986.