Lagrangian Dynamics 5
-15
References
[1] Abraham, R. and Marsden, J.E., Foundations of Mechanics, Addison-Wesley, Reading, MA, 2nd ed.
1987.
[2] Arimoto,S.,ControlTheoryofNon-linearMechanicalSystems:A Passivity-Basedand Circuit-Theoretic
Approach, Volume 49 of OESS, Oxford University Press, Oxford, 1996.
[3] Asada, H. and Slotine, J.-J.E., Robot Analysis and Control, John Wiley & Sons, New York, 1986.
[4] Balafoutis, C.A. and Patel, R.V., Dynamic Analysis of Robot Manipulators: A Cartesian Tensor Ap-
proach, Number 131 in Kluwer International Series in Engineering and Computer Science, Kluwer,
Dordrecht, 1991.
[5] Ball, R.S., The Theory of Screws, Hodges & Foster, Dublin, 1876.
[6] Bloch, A.M., Nonholonomic Mechanics and Control, Volume 24 of Interdisciplinary Texts in Mathe-
matics, Springer-Verlag, Heidelberg, 2003.
[7] Brockett, R.W., Robotic manipulators and the product of exponentials formula, In: Mathematical
Theory of Networks and Systems (MTNS), 120–129, Beer Sheba, Israel, 1983.
[8] Brogliato, B., Nonsmooth Mechanics: Models, Dynamics and Control, Springer-Verlag, New York,
2nd ed., 1999.
[9] Bullo, F. and Lewis, A.D., Geometric Control of Mechanical Systems, Texts in Applied Mathematics,
Springer-Verlag, New York, December 2002 (to be published).
[10] Craig, J.J., Introduction to Robotics: Mechanics and Control, Addison-Wesley, Reading, MA, 2nd ed.,
1989.
[11] do Carmo, M.P., Riemannian Geometry, Birkhauser, Boston, 1992.
[12] Featherstone,R., RobotDynamics Algorithms, Volume 22 of KluwerInternational Series in Engineering
and Computer Science, Kluwer, Dordrecht, 1987.
[13] Featherstone, R. and Orin, D.E., Robot dynamics: equations and algorithms, In: IEEE Conference on
Robotics and Automation, 826–834, San Francisco, CA, April 2000.
[14] Hollerbach, J.M., A recursive Lagrangian formulation of manipulator dynamics and a compar-
ative study of dynamics formulation, IEEE Trans. Syst., Man, & Cybernetics, 10(11):730–736,
1980.
[15] Kahn, M.E. and Roth, B., The near-minimum-time control of open-loop articulated kinematic
chains, ASME J. Dynamic Syst., Meas., Control, 93:164–172, September 1971.
[16] Kozlov, V.V. and Treshchev, D.V., Billiards: A Generic Introduction to the Dynamics of Systems with
Impacts, Volume 89 of Translations of Mathematical Monographs, American Mathematical Society,
Providence, RI, June 1991.
[17] Lewis, A.D., Simple mechanical control systems with constraints, IEEE Trans. Automatic Control,
45(8):1420–1436, 2000.
[18] Lilly, K.W., Efficient Dynamic Simulation of Robotic Mechanisms, Kluwer, Dordrecht, 1992.
[19] Luh, J.Y.S., Walker, M.W., and Paul, R.P.C., On-line computational scheme for mechanical manip-
ulators, ASME J. Dynamic Syst., Meas., Control, 102(2):69–76, 1980.
[20] Marsden, J.E. and Ratiu, T.S., Introduction to Mechanics and Symmetry, Springer-Verlag, New York,
1994.
[21] Murray, R.M., Li, Z., and Sastry, S.S., A Mathematical Introduction to Robotic Manipulation, CRC
Press, Boca Raton, 1994.
[22] Orin, D.E., McGhee, R.B., Vukobratovi
´
c, M., and Hartoch, G., Kinematic and kinetic analysis of
open-chain linkages utilizing Newton-Euler methods, Mathe. Biosci., 43:107–130, 1979.
[23] Ortega, R., Loria, A., Nicklasson, P.J., and Sira-Ramirez, H., Passivity-based control of Euler-
Lagrange systems: mechanical, electrical and electromechanical applications, In: Communications
and Control Engineering, Springer-Verlag, New York, 1998.
[24] Park, F.C., Bobrow, J.E., and Ploen, S.R., A Lie group formulation of robot dynamics, Int. J. Robotics
Res., 14(6):609–618, 1995.
[25] Park, F.C., Choi, J., and Ploen, S.R., Symbolic formulation of closed chain dynamics in independent
coordinates, Mechanism and Machine Theory, 34(5):731–751, 1999.