788 A. Diaspro et al.
Tyrrell, R.M. and Keyse, S.M. (1990). The interaction of UVA radiation with
Volkmann, J. (1996). Ernst Abbe and his work. Appl. Opt. 5, 1720–1731.
Wang, X.F. and Herman, B. (1996). Fluorescence Imaging Spectroscopy and Micros-
copy. (Wiley-Liss, New York).
Wang, Y., Wang, X.F., Wang, C. and Ma, H. (2004). Simultaneously multi-
parameter determination of hematonosis cell apoptosis by two-photon and
confocal laser scanning microscopy. J. Clin. Lab. Anal. 18(5), 271–275.
Webb, R.H. (1996). Confocal optical microscopy. Rep. Progr. Phys. 59,
427–471.
Weinstein, M. and Castleman, K.R. (1971). Reconstructing 3-D specimens from
2-D section images. Proc. SPIE 26, 131–138.
White, J.G., Amos, W.B. and Fordham, M. (1987). An evaluation of confocal
microscopy. J. Cell Biol. 105, 41–48.
White, N.S. and Errington, R.J. (2000). Improved laser scanning fl uorescence
microscopy by multiphoton excitation. Adv. Imag. Elect. Phys. 113, 249–277.
Wiedenmann, J., Ivanchenko, S., Oswald, F., Schmitt, F., Rocker, C., Salih, A.,
Spindler, K.-D. and Nienhaus, G.U. (2004). EosFP, a fl uorescent marker
protein with UV-inducible green-to-red fl uorescence conversion. Proc. Natl.
Acad. Sci. USA 101(45), 15905–15910.
Wier, W.G., Balke, C.W., Michael, J.A. and Mauban, J.R. (2000). A custom con-
focal and two-photon digital laser scanning microscope. Am. J. Physiol. 278,
H2150–H2156.
Wilson, T. (2002). Confocal microscopy: Basic principles and architectures. In:
Confocal and Two-Photon Microscopy: Foundations, Applications and Advances
(A. Diaspro, Ed.), 19–38. (Wiley-Liss, New York).
Wilson, T. and Sheppard, C.J.R. (1984). Theory and Practice of Scanning Optical
Microscopy. (Academic Press, London).
Wise, F. (1999). Lasers for two-photon microscopy. In: Imaging: A Laboratory
Manual (R., Yuste, F., Lanni, A. Konnerth, Eds.), 18.1–9. (Cold Spring Harbor
Press, Cold Spring Harbor, NY).
Straub, M. and Hell, S.W. (1998). Fluorescence lifetime three-dimensional
microscopy with picosecond precision using a multifocal multiphoton
microscope. App. Phys. Lett. 73, 1769–1771.
Svelto, O. (1998). Principles of Lasers, 4th ed. (Plenum, New York).
Sytsma, J., Vroom, J.M., De Grauw, C.J. and Gerritsen, H.C. (1998). Time-gated
fl uorescence lifetime imaging and microvolume spectroscopy using two-
photon excitation. J. Microsc. 191, 39–51.
Tan, Y.P., Llano, I., Hopt, A., Wurriehausen, F. and Neher, E. (1999). Fast scan-
ning and effi cient photodetection in a simple two-photon microscope. J.
Neurosci. Methods 92, 123–135.
Tirlapur, U.K. and König, K. (2002). Two-photon near infrared femtosecond laser
scanning microscopy in plant biology. In: Confocal and Two-Photon Microscopy:
Foundations, Applications and Advances (A. Diaspro, Ed.), 449–468. (Wiley-Liss,
New York).
two and three-photon microscopy. In: Confocal and Two-Photon Microscopy:
Foundations, Applications and Advances (A. Diaspro, Ed.), 127–152. (Wiley-
Liss, New York).
measurements in three-dimensional section fluorescence microscopy. J.
Tsien, R.Y. (1995). Design of Molecules to Probe Living Cells. Abstracts of
Microsc. 225, 88–95.
cultured cells. J. Photochem. Photobiol. B 4, 349–361.
Papers of the American Chemical Society 209:4-SOCED.
(2007). Characterization of uniform ultrathin layer for z-response
Torok, P. and Sheppard, C.J.R. (2002). The role of pinhole size in high aperture
*Vicidomini, G., Schneider, M., Bianchini, P., Krol, S., Szellas, T. and Diaspro, A.
versus conventional imaging of biological structures by fl uorescence light