782 A. Diaspro et al.
Esposito, A., Federici, F., Usai, C., Cannone, F., Chirico, G., Collini, M. and
Diaspro, A. (2004). Notes on theory and experimental conditions behind
two-photon excitation microscopy. Microsc. Res. Tech. 63, 12–17.
Faisal, F.H.M. (1987). Theory of Multiphoton Processes. (Plenum Press, New
York).
Farrer, R.A., Previte, M.J.R., Olson, C.E., Peyser, L.A., Fourkas, J.T. and So, P.
T.C. (1999). Single molecule detection with a two-photon fl uorescence
microscope with fast scanning capabilities and polarization sensitivity. Opt.
Lett. 24, 1832–1834.
Fay, F.S., Carrington, W. and Fogarty, K.E. (1989). Three-dimensional molecu-
lar distribution in single cells analyzed using the digital imaging micro-
scope. J. Microsc. 153, 133–149.
Feynman, R.P. (1985). QED: The Strange Theory of Light and Matter. (Princeton
University Press, Princeton, NJ).
Fisher, W.G., Watcher, E.A., Armas, M. and Seaton, C. (1997). Titanium: sap-
phire laser as an excitation source in two-photon spectroscopy. Appl. Spec-
trosc. 51, 218–226.
Ford, B.J. (1991). The Leeuwenhoek Legacy. (Biopress and Parrand, Bristol).
Franken, P.A., Hill, A.E., Peters, C.W. and Weinreich, G. (1961). Generation of
optical harmonics. Phys. Rev. Lett. 7, 118–119.
French, T., So, P.T.C., Weaver, D.J., Coelho-Sampaio, T. and Gratton, E. (1997).
Two-photon fl uorescence lifetime imaging microscopy of macrophage-
mediated antigen processing. J. Microsc. 185, 339–353.
Friedrich, D.M. (1982). Two-photon molecular spectroscopy. J. Chem. Educ. 59,
472–483.
Friedrich, D.M. and McClain, W.M. (1980). Two-photon molecular electronic
spectroscopy. Annu. Rev. Phys. Chem. 31, 559–577.
Gannaway, J.N. and Sheppard, C.J.R. (1978). Second harmonic imaging in the
scanning optical microscope. Opt. Quant. Electron. 10, 435–439.
Gauderon, R., Lukins, R.B. and Sheppard, C.J.R. (1999). Effects of a confocal
pinhole in two-photon microscopy. Microsc. Res. Tech. 47, 210–214.
Gerton, J.M., Wade, L.A., Lessard, G.A., Ma, Z. and Quake, S.R. (2004). Tip-
enhanced fl uorescence microscopy at 10 nanometer resolution. Phy. Rev.
Lett. 93(18), 180801.
Girkin, J. and Wokosin, D. (2002). Practical multiphoton microscopy. In: Confo-
cal and Two-Photon Microscopy: Foundations, Applications and Advances (A.
Diaspro, Ed.), 207–236. (Wiley-Liss, New York).
Göppert-Mayer, M. (1931). Über Elementarakte mit zwei Quantensprüngen.
Ann. Phys. 9, 273–295.
Janacek, J., Ramoino, P., Vicidomini, G. and Diaspro, A. (2004). Improve-
ment in volume estimation from confocal sections after image deconvolu-
tion. Microsc. Res. Tech. 64(2), 151–155.
Appl. Phys. 59(10), 3318–3327.
Marowsky, G. and Soria, S. (2001). Evanescent-fi eld-induced two-photon
Phys. B 73, 869–871.
Enhanced Green Fluorescent Protein (GFP) fluorescence after polyelectrolyte
Gosnell, T.R. and Taylor, A.J. (Eds.) (1991). Selected Papers on Ultrafast Laser
Technology. SPIE Milestone Series. (SPIE Press, Bellingham, WA).
Duveneck, G.L., Bopp, M.A., Ehrat, M., Haiml, M., Keller, U., Bader, M.A.,
Dürig, U. and Pohl, D.W. (1986). Near-fi eld optical-scanning microscopy. J.
fl uorescence: Excitation of macroscopic areas of planar waveguides. Appl.
C. (2006). Multi-photon excitation microscopy. Biomed. Eng. Online. 5, 36.
caging. Opt. Express 14, 9815–9824.
*Diaspro, A., Bianchini, P., Vicidomini, G., Faretta, M., Ramoino, P. and Usai,
*Diaspro, A., Krol, S., Campanini, B., Cannone, F. and Chirico, G. (2006).
Difato, F., Mazzone, F., Scaglione, S., Fato, M., Beltrame, F., Kubinova, L.,