31. D. Weiss, H. Gao, and E. Arzt, “Constrained diffusional creep in UHV-
produced copper thin films,” Acta Mater., 49:2395–2403 (2001)
32. M. J. Kobrinsky and C. V. Thompson, “Activation volume for inelastic defor-
mation in polycrystalline Ag thin films,” Acta Mater., 48:625–633 (2000)
33. M. Ronay, “Yield stress of thin fcc polycrystalline metal films bonded to
rigid substrates,” Philos. Mag., A40(2):145–160 (1979)
34. Y.-L. Shen, S. Suresh, M. Y. He, A. Bagchi, O. Kienzle, M. Rühle, and A. G.
Evans, “Stress evolution in passivated thin films of Cu on silica substrates,”
J. Mater. Res., 13(7):1928–1937 (1998)
35. J. A. Ruud, D. Josell, F. Spaepen, and A. L. Greer, “A new method for ten-
sile testing of thin films,” J. Mater. Res., 8:112–117 (1993)
36. D. T. Read and J. W. Dally, “A new method for measuring the strength and
ductility of thin films,” J. Mater. Res., 8(7):1542–1549 (1993)
37. D. T. Read, “Tension-tension fatigue of copper thin films,” Int. J. Fatigue,
20(3):203–209 (1998)
38. D. Josell, D. van Heerden, D. Read, J. Bonevich, and D. Shechtman, “Tensile
testing low density multilayers: aluminum/titanium,” J. Mater. Res.,
13(10):2902–2909 (1998)
39. H. Huang and F. Spaepen, “Tensile testing of free-standing Cu, Ag and Al
films and Ag/Cu multilayers,” Acta Mater., 48(12):3261–3269 (2000)
40. M. Hommel, O. Kraft, S. P. Baker, and E. Arzt, “Micro-tensile and fatigue
testing of copper thin films on substrates,” Materials Science of
Microelectromechanical System (MEMS) Devices, MRS Symp. Proc., vol.
546, Pittsburgh, PA (1999), pp. 133–138
41. E. A. Stach, U. Dahmen, and W. D. Nix, “Real time observations of dislocation-
mediated plasticity in the epitaxial Al (011)/Si (100) thin film system,” MRS
Symp. Proc., vol. 619, Warrendale, PA (2000)
42. G. Dehm, B. J. Inkson, T. J. Balk, T. Wagner, and E. Arzt, “Influence of
film/substrate interface structure on plasticity in metal thin films,” MRS
Conf. Proc., vol. 673, Warrendale, PA (2001), pp. 2.6.1–2.6.12
43. G. Dehm, D. Weiss, and E. Arzt, “In situ transmission electron microscopy
study of thermal-stress-induced dislocations in a thin Cu film constrained by
a Si substrate,” Mater. Sci. Eng., A309–310:468–472 (2001)
44. V. Weihnacht and W. Brückner, “Dislocation accumulation and strengthening
in Cu thin films,” Acta Mater., 49:2365–2372 (2001)
45. L. B. Freund, J. Appl. Mech., 43:553 (1987)
46. C. V. Thompson, “The yield strength of polycrystalline films,” J. Mater. Res.,
8(2):237–238 (1993)
47. P. Chaudhari, Philos. Mag., A39(4):507–516 (1979)
48. G. Dehm, B. J. Inkson, T. Wagner, T. J. Balk, and E. Arzt, “Plasticity and
interfacial dislocation mechanisms in epitaxial and polycrystalline Al films
constrained by substrates,” J. Mater. Sci. Technol., 18(2):113–117 (2002)
49. H. J. Frost and M. F. Ashby, Deformation-Mechanism Maps, Pergamon
Press, Oxford, UK (1982)
50. W. D. Nix and O. S. Leung, “Thin films: plasticity,” Encyclopedia of
Materials: Science and Technology (K. H. J. Buschow, R. W. Cahn, U. C.
Flemings, B. Ilschner, E. J. Kramer, and S. Mahajan, eds.), Elsevier Science
Ltd., Oxford, UK (2001)
402 DIFFUSION PROCESSES IN ADVANCED TECHNOLOGICAL MATERIALS