532 INDEX
collective jumps 154, 158
composition–conserving complex 131
constitutional 131
delocalized 146
equilibrium concentration 129, 249
formation energy 115, 120–121
formation entropy 102, 122–126,
formation volume 137
jump rate 138
migration energy 141, 507, 516
unstable 146, 154
polycrystalline films 37, 382
polymers:
activation energy surface diffusion
339–340
adsorption energy 339–340
BPA-PC (Ag, Au) 350
chemical interaction 341
Cr 342, 352
Cs 342, 352
electron microscopy 344
FLARE
TM
355
HOSP (Cu, Al, Ta, Pt) 341, 357
K 342
Kapton® (O
2
, CO
2
, H
2
O) 349
low k 333
Monte Carlo simulation 346, 353
oxygen 348, 349
PMDA-ODA(Ag, Al, Au, Cu) 337, 348,
358
polyimide 337, 348
PTCDA 343, 348
SiLK® (Cu) 337, 348
Teflon® AF 337, 355
Ti 337, 342
TMC® (Ag, Au) 343, 351
Q
quasicrystals: 57–60
Al-Pd 306
Co-Al 306
R
reactive phase formation 284
S
self–diffusion:
activation entropy 69–71, 95
cohesive energy 71,88
diffusion frequency 97, 101
free energy of activation 69, 76, 94
heat of activated complex 71, 95, 99–100
spinodal decomposition 23–25
sub–boundaries 37, 41, 43
solute effect:
lattice 14
grain boundaries 52–56
parameters (Table 1.5) 55
silicides:
CoSi
2
320, 322
Fe 306, 322
Hf 310
Ir 302
Mo 300, 316
Ni, NiSi
2
301–304, 317, 323–324
Rh 302
SiC 306
Si-Ge 306
SiH
4
300
technology problems 309
Ti, TiSi
2
(c49, C54) 309–310, 315
V 309
W 310
Zr 310, 316
sticking coefficient (metal/polymer) 265,
331–332, 335
strain hardening 379–381, 383, 396
stress relaxation 298, 366–367, 378
substrate curvature 368, 370
surface roughness, nucleation 317, 319
T
texture 376, 399, 405
thermal expansion 94–95, 367, 370, 458,
463
thermally activated glide 378
thin Films 30–37
tight-binding method 118
transition state theory 138
V
vacancy:
enthalpy of formation and motion 12
entropy of formation and motion 12
valence bond parameter 88–90
voiding 399, 445, 474– 475
stress–induced 394–395, 397, 478, 481
X
x–ray:
stress measurement 373–376
XPS 337, 342, 354