
11.1 Control of DC Motors 565
)ractice Problem 1 1
.:
The rheostat of Example 11.2 is to be replaced by a duty cycle controller operating from the
240-V dc supply. Calculate the duty-cycle range required to achieve operation over the speed
range of 1800-3600 r/min as specified in Example 11.2.
Solution
0.26
< D <
0.53
D
Armature-Circuit Resistance Control
Armature-circuit resistance control
pro-
vides a means of obtaining reduced speed by the insertion of external series resistance
in the armature circuit. It can be used with series, shunt, and compound motors; for the
last two types, the series resistor must be connected between the shunt field and the
armature, not between the line and the motor. It is a common method of speed control
for series motors and is generally analogous in action to wound-rotor-induction-motor
control by the addition of external series rotor resistance.
Depending upon the value of the series armature resistance, the speed may vary
significantly with load, since the speed depends on the voltage drop in this resistance
and hence on the armature current demanded by the load. For example, a 1200-r/min
shunt motor whose speed under load is reduced to 750 r/min by series armature re-
sistance will return to almost 1200-r/min operation if the load is removed because
the no-load current produces a voltage drop across the series resistance which is in-
significant. The disadvantage of poor speed regulation may not be important in a series
motor, which is used only where varying-speed service is required or can be tolerated.
A significant disadvantage of this method of speed control is that the power loss
in the external resistor is large, especially when the speed is greatly reduced. In fact,
for a constant-torque load, the power input to the motor plus resistor remains constant,
while the power output to the load decreases in proportion to the speed. Operating
costs are therefore comparatively high for lengthy operation at reduced speeds. Be-
cause of its low initial cost however, the series-resistance method (or the variation of it
discussed in the next paragraph) will often be attractive economically for applications
which require only short-time or intermittent speed reduction. Unlike field-current
control, armature-resistance control results in a
constant-torque drive
because both
the field-flux and, to a first approximation, the allowable armature current remain
constant as speed changes.
A variation of this control scheme is given by the
shunted-armature method,
which may be applied to a series motor, as in Fig. 11.3a, or a shunt motor, as in
Fig. 11.3b. In effect, resistors R1 and R2 act as a voltage divider applying a reduced
voltage to the armature. Greater flexibility is possible because two resistors can now
be adjusted to provide the desired performance. For series motors, the no-load speed
can be adjusted to a finite, reasonable value, and the scheme is therefore applicable to
the production of slow speeds at light loads. For shunt motors, the speed regulation in
the low-speed range is appreciably improved because the no-load speed is definitely
lower than the value with no controlling resistors.