mikos: “9026_c012” — 2007/4/9 — 15:51 — page 20 — #20
12-20 Tissue Engineering
[100] Aldous, B.J., Franks, F., and Greer, A.L., Diffusion of water within an amorphous carbohydrate,
J. Mater. Sci., 32, 301, 1997.
[101] Clegg, J.S. et al., Cellular response to extreme water loss: the water-replacement hypothesis,
Cryobiology, 19, 306, 1982.
[102] Migliardo, F., Magazu, S., and Mondelli, C., Elastic incoherent neutron scattering studies on glass
forming hydrogen-bonded systems, J. Mol. Liq., 110, 7, 2004.
[103] Fowler, A.J. and Toner, M., Prevention of hemolysis in rapidly frozen erythrocytes by using a laser
pulse, Ann. NY Acad. Sci., 858, 245, 1998.
[104] Novikov, V.N. and Sololov, A.P., Universality of the dynamic crossover in glass-forming liquids:
a “magic” relaxation time, Phys.Rev.E, 67, 031507, 2003.
[105] Aksan, A. and Toner, M., Isothermal desiccation and vitrification kinetics of trehalose–dextran
solutions, Langmuir, 20, 5521, 2004.
[106] Rey, L. and May, J.C., Freeze-Drying/Lyophilization of Pharmaceutical and Biological Products,
Rey, L. and May, J.C., Eds., New York, Marcel Dekker, Drugs and the pharmaceutical sciences,
1999.
[107] Smythe, B.M., Sucrose crystal growth, Aust. J. Chem., 20, 1097, 1967.
[108] Sarciaux, J.M. et al., Influence of bovine somatotropin (BST) concentration on the phys-
ical/chemical stability of freeze-dried sucrose/BST formulations, Pharmac. Res., 12, S, 1995.
[109] Benaroudj, N., Lee, D.H., and Goldberg, A.L., Trehalose accumulation during cellular stress
protects cells and cellular proteins from damage by oxygen radicals, J. Biol. Chem., 276, 24261,
2001.
[110] Buitink, J., Hemminga, M.A., and Hoekstra, F.A., Characterization of molecular mobility in seed
tissues: an electron paramagnetic spin probe study, Biophys. J., 76, 3315, 1999.
[111] Le Meste, M. and Voilley, A., Influence of hydration on rotational diffusivity of solutes in model
systems, J. Phys. Chem., 92, 1612, 1988.
[112] Ekdawi-Sever, N. et al., Diffusion of sucrose and α,α-trehalose in aqueous solutions, J. Phys.
Chem. A, 107, 936, 2003.
[113] Paschek, D. and Geiger, A., Simulation study on the diffusive motion in deeply supercooled water,
J. Phys. Chem. B, 103, 4139, 1999.
[114] Price, W.S., Ide, H., and Arata, Y., Self-diffusion of supercooled water to 238 K using PGSE NMR
diffusion measurements, J. Phys. Chem. A, 103, 448, 1999.
[115] Onsager, L. and Runnels, L.K., Diffusion and relaxation phenomena in ice, J. Chem. Phys., 50,
1089, 1969.
[116] Petrenko, V.F. and Whitworth, R.W., PhysicsofIce, Oxford University Press Inc., New York, NY,
1999.
[117] Mills, R., Self-diffusion in normal and heavy water in the range 1–45
◦
C, J. Phys. Chem., 77, 685,
1973.
[118] Harris, K.R. and Newitt, P.J., Self-diffusion of water at low temperatures and high pressure, J. Chem.
Eng. Data, 42, 346, 1997.
[119] Moran, G.R. and Jeffrey, K.R., A study of the molecular motion in glucose/water mixtures using
deuterium nuclear magnetic resonance, J. Chem. Phys., 110, 3472, 1999.
[120] Miller, D.P., dePablo, J.J., and Corti, H.R., Viscosity and glass transition temperature of aqueous
mixtures of trehalose with borax and sodium chloride, J. Phys. Chem. B,103, 10243–10249, 1999.