mikos: “9026_c012” — 2007/4/9 — 15:51 — page 19 — #19
Roles of Thermodynamic State and Molecular Mobility 12-19
[76] Miller, D.P., Anderson, R.E., and de Pablo, J.J., Stabilization of lactate dehydrogenase following
freeze-thawing and vacuum-drying in the presence of trehalose and borate, Pharma. Res., 15, 1215,
1998.
[77] Allison, S.D. et al., Hydrogen bonding between sugar and protein is responsible for inhibition of
dehydration-induced protein folding, Arch. Biochem. Biophys., 223, 289, 1999.
[78] Conrad, P.B. et al., Stabilization and preservation of Lactobacillus acidophilus in saccharide
matrices, Cryobiology, 41, 17, 2000.
[79] Bieganski, R.M. et al., Stabilization of active recombinant retroviruses in an amorphous dry state
with trehalose, Biotechnol. Prog., 14, 615, 1998.
[80] Sun, W.Q., Irving, T.C., and Leopold, A.C., The role of sugar, vitrification and membrane phase
transition in seed desiccation tolerance, Physiol. Plant, 90, 621, 1994.
[81] Acker, J.P. et al., Engineering desiccation tolerance in mammalian cells: tools and techniques, in
Life in the Frozen State, Fuller, B.J., Lane, L., and Benson, E.E., Eds., CRC Press, Boca Raton, FL,
2004.
[82] Eroglu, A., Toner, M., and Toth, T.L., Beneficial effect of microinjectedtrehalose on the cryosurvival
of human oocytes, Fertil. Steril., 77, 152, 2002.
[83] Wolkers, W.F. et al., Temperature dependence of fluid phase endocytosis coincides with membrane
properties of pig platelets, Biochem. Biophys. Acta — Biomembr., 1612, 154, 2003.
[84] Mussauer, H., Sukhorukov, V.L., and Zimmermann, U., Trehalose improves survival of
electrotransfected mammalian cells, Cytometry, 45, 2001.
[85] Shirakashi, R. et al., Intracellular delivery of trehalose into mammalian cells by electropermeabil-
ization, J. Membr. Biol., 189, 45, 2002.
[86] Puhlev, I. et al., Desiccation tolerance in human cells, Cryobiology, 42, 207, 2001.
[87] Lee, S. and Doukas, A.G., Laser-generated stress waves and their effects on the cell membrane,
IEEE J. Select. Top. Quant. Electron., 5, 997, 1999.
[88] Kodama, T., Hamblin, M.R., and Doukas, A.G., Cytoplasmic molecular delivery with shock waves:
importance of impulse, Biophys. J., 79, 1821, 2000.
[89] Oliver, A.E. et al., Loading human mesenchymal stem cells with trehalose by fluid-phase
endocytosis, Cell Preserv. Technol., 2, 35, 2004.
[90] Russo, M.J., Bayley, H., and Toner, M., Reversible permeabilization of plasme membranes with an
engineered switchable pore, Nat. Biotechnol., 15, 278, 1997.
[91] Eroglu, A. et al., Intracellular trehalose improves the survival of cryopreserved mammalian cells,
Nat. Biotechnol., 18, 163, 2000.
[92] Guo, N. et al., Trehalose expression confers desiccation tolerance on human cells, Nat. Biotechnol.,
18, 168, 2000.
[93] van den Dries, I.J. et al., Effects of water content and molecular weight on spin probe and water
mobility in malto-oligamer glasses, J. Phys. Chem. B, 1004, 10126, 2000.
[94] Cicerone, M.T., Blackburn, F.R., and Ediger, M.D., How do molecules move near tg — molecular
rotation of 6 probes in o-terphenyl across 14 decades in time, J. Chem. Phys., 102, 471,
1995.
[95] Allison, S.D. et al., Effects of drying methods and additives on structure and function of actin:
mechanisms of dehydration-induced damage and its inhibition, Arch. Biochem. Biophys., 358, 171,
1998.
[96] Magazu, S., Maisano, G., and Majolino, D., Diffusive properties of alpha,alpha-trehalose-water
solutions, Prog. Theoret. Phys. Suppl., 195, 1997.
[97] Molinero, V., Çagin, T., and Goddard III, W.A., Mechanisms of nonexponential relaxation in
supercooled glucose solutions: the role of water facilitation, J. Phys. Chem. A, 108, 3699, 2004.
[98] Tromp, R.H., Parker, R., and Ring, S.G., Water diffusion in glasses of carbohydrates, Carbohydr.
Res., 303, 199, 1997.
[99] Parker, R. and Ring, S.G., Diffusion in maltose–water mixtures at temperatures close to the
glass-transition, Carbohydr. Res., 273, 147, 1995.