mikos: “9026_c011” — 2007/4/9 — 15:51 — page 10 — #10
11-10 Tissue Engineering
[34] Catledge, S.A. et al., Nanostructured ceramics for biomedical implants, J. Nanosci. Nanotechnol.,2,
293, 2002.
[35] Ahn, E. et al., Properties of nanostructured hydroxyapatite-based bioceramics, Transactions of the
Sixth World Biomaterials Congress, p. 643, 2000.
[36] Webster, T.J. et al., Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics,
J. Biomed. Mater. Res., 51, 475, 2000.
[37] Webster, T.J., Siegel, R.W., and Bizios, R., Osteoblast adhesion on nanophase ceramics, Biomaterials,
20, 1221, 1999.
[38] Webster, T.J., Siegel, R.W., and Bizios, R., Nanoceramic surface roughness enhances osteoblast and
osteoclast functions for improved orthopaedic/dental implant efficacy, Scr. Mater., 44, 1639, 2001.
[39] Fang, L.R. et al., Preparation of nano-sized hydroxyapatite in chloroform medium, J. Inorg. Mater.,
18, 801, 2003.
[40] Liu, Q. et al., Surface modification of nano-apatite by grafting organic polymer, Biomaterials, 19,
1067, 1998.
[41] Liu, Q., de Wijn, J.R., and van Blitterswijk, C.A., Covalent bonding of PMMA, PBMA, and
poly(HEMA) to hydroxyapatite particles, J. Biomed. Mater. Res., 40, 257, 1998.
[42] Liu, Q., de Wijn, J.R., and van Blitterswijk, C.A., Composite biomaterials with chemical bonding
between hydroxyapatite filler particles and PEG/PBT copolymer matrix, J. Biomed. Mater. Res., 40,
490, 1998.
[43] Hu, Q.L. et al., Preparation and characterization of biodegradable chitosan/hydroxyapatite nano-
composite rods via in situ hybridization: a potential material as internal fixation of bone fracture,
Biomaterials, 25, 779, 2004.
[44] Lewandrowski, K.U. et al., Enhanced bioactivity of a poly(propylene fumarate) bone graft substitute
by augmentation with nano-hydroxyapatite, Bio-Med. Mater. Eng., 13, 115, 2003.
[45] Zhang, W., Liao, S.S., and Cui, F.Z., Hierarchical self-assembly of nano-fibrils in mineralized
collagen, Chem. Mater., 15, 3221, 2003.
[46] Rhee, S.H. and Choi, J.Y., Synthesis of a bioactive poly(methyl methacrylate)/silica hybird,
Bioceramics 14, 218-2, 433, 2002.
[47] Rhee, S.H., Effect of calcium salt content in the poly(epsilon-caprolactone)/silica nanocomposite
on the nucleation and growth behavior of apatite layer, J. Biomed. Mater. Res., 67A, 1131, 2003.
[48] Yoo, J.J. and Rhee, S.H., Evaluations of bioactivity and mechanical properties of poly (epsilon-
caprolactone)/silica nanocomposite following heat treatment, J. Biomed. Mater. Res., 68A, 401,
2004.
[49] Nawa, M. et al., The effect of TiO
2
addition on strengthening and toughening in intragranular type
of 12Ce-TZP/Al
2
O
3
nanocomposites, J. Eur. Ceram. Soc., 18, 209, 1998.
[50] Uchida, M. et al., Apatite-forming ability of a zirconia/alumina nano-composite induced by
chemical treatment, J. Biomed. Mater. Res., 60, 277, 2002.
[51] Jin, Z. et al., Dynamic mechanical behavior of melt-processed multi-walled carbon nan-
otube/poly(methyl methacrylate) composites, Chem. Phys. Lett., 337, 43, 2001.
[52] Bernholc, J. et al., Mechanical and electrical properties of nanotubes, Annu.Rev.Mater.Res., 32,
347, 2002.
[53] Iijima, S., Helical microtubules of graphitic carbon, Nature, 354, 56, 1991.
[54] Iijima, S. and Ichihashi, T., Single-shell carbon nanotubes of 1-nm diameter, Nature, 363, 603, 1993.
[55] Bethune, D.S. et al., Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layerwalls,
Nature, 363, 605, 1993.
[56] Ajayan, P.M., Schadler, L.S., and Braun, P.V., Nanocomposite Science and Technology, Wiley-VCH
Verlag, New York, 2003.
[57] Calvert, P., Nanotube composites—arecipeforstrength, Nature, 399, 210, 1999.
[58] Terrones, M., Science and technology of the twenty-first century: synthesis, properties and
applications of carbon nanotubes, Annu.Rev.Mater.Res., 33, 419, 2003.
[59] Haddon, R.C. et al., Purification and separation of carbon nanotubes, Mrs Bull., 29, 252, 2004.