mikos: “9026_c008” — 2007/4/9 — 15:50 — page 17 — #17
Polymeric Scaffolds 8-17
[85] Lee, S.J., Choi, J.S., Park, K.S., Khang, G., Lee, Y.M., and Lee, H.B., Response of MG63 osteoblast-
like cells onto polycarbonate membrane surfaces with different micropore sizes, Biomaterials 2004,
25(19), 4699–4707.
[86] Cai, J., Bo, S., Cheng, R., Jiang, L., and Yang, Y., Analysis of interfacial phenomena of aqueous
solutions of polyethylene oxide and polyethylene glycol flowing in hydrophilic and hydrophobic
capillary viscometers, J. Colloid. Interface Sci. 2004, 276(1), 174–181.
[87] Gutowska, A., Jeong, B., and Jasionowski, M., Injectable gels for tissue engineering, Anat. Rec.
2001, 263(4), 342–349.
[88] Novikova, L.N., Novikov, L.N., and Kellerth, J.O., Biopolymers and biodegradable smart implants
for tissue regeneration after spinal cord injury, Curr. Opin. Neurol. 2003, 16(6), 711–715.
[89] Sawhney, A.S., Pathak, C.P., and Hubbell, J.A., Bioerodible hydrogels based on photopolymerized
poly(ethylene glycol)-co-poly(alpha-hydroxy acid) diacrylate macromers, Macromolecules 1993,
26(4), 581–587.
[90] Sims, C.D., Butler, P.E., Casanova, R., Lee, B.T., Randolph, M.A., Lee, W.P., Vacanti, C.A., and
Yaremchuk, M.J., Injectable cartilage using polyethylene oxide polymer substrates, Plast. Reconstr.
Surg. 1996, 98(5), 843–850.
[91] Bourke, S.L. and Kohn, J., Polymers derived from the amino acid L-tyrosine: polycarbonates,
polyarylates and copolymers with poly(ethylene glycol), Adv. Drug Deliv. Rev. 2003, 55(4), 447–
466.
[92] Bryant, S.J. and Anseth, K.S., Controlling the spatial distribution of ECM components in
degradable PEG hydrogels for tissue engineering cartilage, J. Biomed. Mater. Res. 2003, 64A(1),
70–79.
[93] Desai, N.P., Sojomihardjo, A., Yao, Z., Ron, N., and Soon-Shiong, P., Interpenetrating poly-
mer networks of alginate and polyethylene glycol for encapsulation of islets of Langerhans,
J. Microencapsul. 2000, 17(6), 677–690.
[94] Ganta, S.R., Piesco, N.P., Long, P., Gassner, R., Motta, L.F., Papworth, G.D., Stolz, D.B., Watkins,
S.C., and Agarwal, S., Vascularization and tissue infiltration of a biodegradable polyurethane
matrix, J. Biomed. Mater. Res. 2003, 64A(2), 242–248.
[95] Gorna, K. and Gogolewski, S., Preparation, degradation, and calcification of biodegradable
polyurethane foams for bone graft substitutes, J. Biomed. Mater. Res. 2003, 67A(3) 813–827.
[96] Zhang, J., Doll, B.A., Beckman, E.J., and Hollinger, J.O., A biodegradable polyurethane–ascorbic
acid scaffold for bone tissue engineering, J. Biomed. Mater. Res. 2003, 67A(2) 389–400.
[97] Grad, S., Kupcsik, L., Gorna, K., Gogolewski, S., and Alini, M., The use of biodegradable poly-
urethane scaffolds for cartilage tissue engineering: potential and limitations, Biomaterials 2003,
24(28), 5163–5171.
[98] McDevitt, T.C., Woodhouse, K.A., Hauschka, S.D., Murry, C.E., and Stayton, P.S., Spatially
organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair, J.
Biomed. Mater. Res. 2003, 66A(3), 586–595.
[99] Anseth, K.S., Metters, A.T., Bryant, S.J., Martens, P.J., Elisseeff, J.H., and Bowman, C.N.,
In situ forming degradable networks and their application in tissue engineering and drug delivery,
J. Control. Release 2002, 78(1-3), 199–209.
[100] Kim, B.S., Baez, C.E., and Atala, A., Biomaterials for tissue engineering, WorldJ.Urol.2000, 18(1),
2–9.
[101] Dar, A., Shachar, M., Leor, J., and Cohen, S., Cardiac tissue engineering — optimization of cardiac
cell seeding and distribution in 3D porous alginate scaffolds, Biotechnol. Bioeng. 2002, 80(3),
305–312.
[102] Sachlos, E. and Czernuszka, J.T., Making tissue engineering scaffolds work. Review: the application
of solid freeform fabrication technology to the production of tissue engineering scaffolds, Eur. Cell.
Mater. 2003, 5, 29–39.
[103] Lu, L., Zhu, X., Valenzuela, R.G., Currier, B.L., and Yaszemski, M.J., Biodegradable polymer
scaffolds for cartilage tissue engineering, Clin. Orthop. 2001, (391 Suppl), S251–S270.