mikos: “9026_c006” — 2007/4/9 — 15:50 — page 20 — #20
6-20 Tissue Engineering
[151] Noble, P.B., Boyarsky, A., and Bentley, K.C., Human lymphocyte migration in vitro: charac-
terization and quantitation of locomotory parameters. Can. J. Physiol. Pharmacol., 1979, 57:
108–112.
[152] Papoulis, A., Probability, Random Variables and Stochastic Processes. New York, NY: McGraw-Hill,
pp. 532–551, 1965.
[153] Ratcliffe, A. and Niklason, L.E., Bioreactors and bioprocessing for tissue engineering. Ann. NY
Acad. Sci., 2002, 961: 210–215.
[154] Lim, J.H.F. and Davies, G.A., A stochastic model to simulate the growth of anchorage dependent
cells on flat surfaces. Biotechnol. Bioeng., 1990, 36: 547.
[155] Zygourakis, K., Bizios, R., and Markenscoff, P., Proliferation of anchorage dependent contact-
inhibited cells. I. Development of theoretical models based on cellular automata. Biotechnol.
Bioeng., 1991, 38: 459–470.
[156] Zygourakis, K., Markenscoff, P., and Bizios, R., Proliferation of anchorage dependent contact-
inhibited cells. II. Experimental results and comparison to theoretical model predictions.
Biotechnol. Bioeng., 1991, 38: 471–479.
[157] Frame, K.K. and Hu, W.S., A model for density-dependent growth of anchorage-dependent
mammalian cells. Biotechnol. Bioeng., 1988, 32: 1061.
[158] Cherry, R.S. and Papoutsakis, E.T., Modeling of contact-inhibited animal cell growth on flat
surfaces and spheres. Biotechnol. Bioeng., 1989, 33: 300.
[159] Sherratt, J.A., Martin, P., Murray, J.D., and Lewis, J., Mathematical models of wound healing in
embryonic and adult epidermis. IMA J. Math. Appl. Med. Biol., 1992, 9: 177–196.
[160] Sherratt, J.A. and Murray, J.D., Epidermal wound healing: the clinical implications of a simple
mathematical model. Cell Transplant, 1992, 1: 365–371.
[161] Dale, P.D., Maini, P.K., and Sherratt, J.A., Mathematical modeling of corneal epithelial wound
healing. Math. Biosci., 1994, 124: 127–147.
[162] Lee, Y., Mcintire, L.V., and Zygourakis, K., Analysis of endothelial cell locomotion: differential
effects of motility and contact inhibition. Biotechnol. Bioeng., 1994, 43: 622–634.
[163] Dallon, J.C. and Othmer, H.G., A discrete cell model with adaptive signalling for aggregation of
Dictyostelium discoideum. Phil. Trans. R. Soc. Lond. B Biol. Sci., 1997, 352: 391–417.
[164] Hogeweg, P., Evolving mechanisms of morphogenesis: on the interplay between differential
adhesion and cell differentiation. J. Theor. Biol., 2000, 203: 317–333.
[165] Marée, A.F. and Hogeweg, P., How amoeboids self-organize into a fruiting body: multi-
cellular coordination in Dictyostelium discoideum. Proc. Natl Acad. Sci. USA, 2001, 98:
3879–3883.
[166] Palsson, E. and Othmer, H.G., A model for individual and collective cell movement in
Dictyostelium discoideum. Proc. Natl Acad. Sci. USA, 2000, 97: 10448–10453.
[167] Dallon, J.C., Sherratt, J.A., and Maini, P.K., Mathematical modelling of extracellular matrix
dynamics using discrete cells: fiber orientation and tissue regeneration. J. Theor. Biol., 1999, 199:
449–471.
[168] Sikavitsas, V.I., Bancroft, G.N., and Mikos, A.G., Formation of three-dimensional cell/polymer
constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor.
J. Biomed. Mater. Res., 2002, 62: 136–148.
[169] Bancroft, G.N., Sikavitsas, V.I., Van Den Dolder, J., Sheffield, T.L., Ambrose, C.G. et al., Fluid flow
increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in
a dose-dependent manner. PNAS, 2002, 99: 12600–12605.
[170] Belgacem, B.Y., Markenscoff, P., and Zygourakis, K., A computational model for tissue regenera-
tion and wound healing. Proceedings of the 3rd Chemical Engineering Symposium, Athens, Greece,
Vol. 2, pp. 1133–1136, 2001.
[171] Huttenlocher, A.F., Ginsberg, M.H., and Horwitz, A.F., Modulation of cell migration by
integrin-mediated cytoskeletal linkages and ligand-binding affinity. J. Cell Biol., 1996, 134:
1551–1562.