mikos: “9026_c008” — 2007/4/9 — 15:50 — page 15 — #15
Polymeric Scaffolds 8-15
[47] Gunatillake, P.A. and Adhikari, R., Biodegradable synthetic polymers for tissue engineering, Eur.
Cell. Mater. 2003, 5, 1–16.
[48] Yang, S., Leong, K.F., Du, Z., and Chua, C.K., The design of scaffolds for use in tissue engineering.
Part I. Traditional factors, Tissue Eng. 2001, 7(6), 679–689.
[49] Freed, L.E., Marquis, J.C., Nohria, A., Emmanual, J., Mikos, A.G., and Langer, R., Neocartilage
formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers, J. Biomed.
Mater. Res. 1993, 27(1), 11–23.
[50] Shinoka, T., Ma, P.X., Shum-Tim, D., Breuer, C.K., Cusick, R.A., Zund, G., Langer, R., Vacanti,
J.P., and Mayer, J.E., Jr., Tissue-engineered heart valves. Autologous valve leaflet replacement study
in a lamb model, Circulation 1996, 94(9Suppl.), II164–II168.
[51] Kaihara, S., Kim, S., Kim, B.S., Mooney, D.J., Tanaka, K., and Vacanti, J.P., Survival and func-
tion of rat hepatocytes cocultured with nonparenchymal cells or sinusoidal endothelial cells on
biodegradable polymers under flow conditions, J. Pediatr. Surg. 2000, 35(9), 1287–1290.
[52] Mooney, D.J., Mazzoni, C.L., Breuer, C., McNamara, K., Hern, D., Vacanti, J.P., and Langer, R.,
Stabilized polyglycolic acid fibre-based tubes for tissue engineering, Biomaterials 1996, 17(2),
115–124.
[53] Agrawal, C.M. and Ray, R.B., Biodegradable polymeric scaffolds for musculoskeletal tissue
engineering, J. Biomed. Mater. Res. 2001, 55(2), 141–150.
[54] Ishaug-Riley, S.L., Okun, L.E., Prado, G., Applegate, M.A., and Ratcliffe, A., Human articular
chondrocyte adhesion and proliferation on synthetic biodegradable polymer films, Biomaterials
1999, 20(23–24), 2245–2256.
[55] Yang, F., Murugan, R., Ramakrishna, S., Wang, X., Ma, Y.X., and Wang, S., Fabrication of nano-
structured porous PLLA scaffold intended for nerve tissue engineering, Biomaterials 2004, 25(10),
1891–1900.
[56] Park, S.S., Jin, H.R., Chi, D.H., and Taylor, R.S., Characteristics of tissue-engineered cartilage from
human auricular chondrocytes, Biomaterials 2004, 25(12), 2363–2369.
[57] Middleton, J.C. and Tipton, A.J., Synthetic biodegradable polymers as orthopedic devices,
Biomaterials 2000, 21(23), 2335–2346.
[58] El-Amin, S.F., Lu, H.H., Khan, Y., Burems, J., Mitchell, J., Tuan, R.S., and Laurencin, C.T., Extra-
cellular matrix production by human osteoblasts cultured on biodegradable polymers applicable
for tissue engineering, Biomaterials 2003, 24(7), 1213–1221.
[59] Kim, B.S., Nikolovski, J., Bonadio, J., Smiley, E., and Mooney, D.J., Engineered smooth muscle
tissues: regulating cell phenotype with the scaffold, Exp. Cell. Res. 1999, 251(2), 318–328.
[60] Teng, Y.D., Lavik, E.B., Qu, X., Park, K.I., Ourednik, J., Zurakowski, D., Langer, R., and Snyder, E.Y.,
Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold
seeded with neural stem cells, Proc. Natl Acad. Sci. USA 2002, 99(5), 3024–3029.
[61] Mooney, D.J., Organ, G., Vacanti, J.P., and Langer, R., Design and fabrication of biodegradable
polymer devices to engineer tubular tissues, Cell Transplant 1994, 3(2), 203–210.
[62] Dai, N.T., Williamson, M.R., Khammo, N., Adams, E.F., and Coombes, A.G., Composite cell
support membranes based on collagen and polycaprolactone for tissue engineering of skin,
Biomaterials 2004, 25(18), 4263–4271.
[63] Barralet, J.E., Wallace, L.L., and Strain, A.J., Tissue engineering of human biliary epithelial cells
on polyglycolic acid/polycaprolactone scaffolds maintains long-term phenotypic stability, Tissue
Eng. 2003, 9(5), 1037–1045.
[64] Park, Y.J., Lee, J.Y., Chang, Y.S., Jeong, J.M., Chung, J.K., Lee, M.C., Park, K.B., and Lee, S.J.,
Radioisotope carrying polyethylene oxide–polycaprolactone copolymer micelles for targetable
bone imaging, Biomaterials 2002, 23(3), 873–879.
[65] Ciapetti, G., Ambrosio, L., Savarino, L., Granchi, D., Cenni, E., Baldini, N., Pagani, S.,
Guizzardi, S., Causa, F., and Giunti, A., Osteoblast growth and function in porous poly
epsilon-caprolactone matrices for bone repair: a preliminary study, Biomaterials 2003, 24(21),
3815–3824.