66 Ч. 1. Принятие решений в условиях
недостатка
информации
2.8.
ИСПОЛЬЗОВАНИЕ НОРМАЛЬНОГО РАСПРЕДЕЛЕНИЯ
В КАЧЕСТВЕ АППРОКСИМАЦИИ БИНОМИАЛЬНОГО
РАСПРЕДЕЛЕНИЯ
Возникает небольшая проблема в связи с тем, что нормальное распределение
оперирует с непрерывными случайными величинами, в то время как биномиальное
и пуассоновское — с дискретными. Но ее можно легко решить при помощи
поправочного коэффициента, называемого "поправка на непрерывность".
Например, при помощи биномиального распределения можно вычислить веро-
ятность существования двух бракованных образцов в выборке, состоящей из п
Ш1ук. Используя нормальное распределение как замену биномиального, мы делаем
допущение, что значение дискретной случайной величины 2 является значением
непрерывной случайной величины на промежутке от 1,5 до 2,5. Это и называется
поправкой на непрерывность. Нормальное распределение, которое мы использовали,
имеет ту же среднюю, и стандартное отклонение, что и обычное биномиальное
распределение. Площадь, покрываемая кривой нормального распределения на
промежутке от 1,5 до 2,5, представляет собой приблизительное значение дискретной
вероятности появления двух бракованных образцов.
Замена распределений производится только, если обычное биномиальное рас-
пределение очень трудоемко и к тому же сеществуют определенные предпосылки.
В 2.S мы использовали распределение Пуассона как замену биномиального. Это
было возможно, если п
—
велико, р
—
мало и пр ^ 5. Биномиальное распределение
можно заменить нормальным, если пр, как и nq, больше 5, т.е. п должно быть
большим, р больше
0,1,
лучик всего около 0,5. Безусловно, указанные значения носят
приблизительный характер. Тем не менее, чем больше п, пр и nq, тем точнее замена.
Среднее и стандартное отклонение биномиального распределения имеют вид:
Е
(г)
в пр [ S ^] и о = Vnpq .
Эти величины используются для вычисления z при применении нормального
распределения (как показано в 2.7).
П Пример 2.14. Каждый день завод производит огромное количество чипсов, 40%
из которых бракованные. Для проверки качества отбираются 20 образцов
из.
произве-
денных за день чипсов. Какова вероятность, что 14 или больше из 20 бракованные?
Решение.
Произведем расчеты, используя обычное нормальное распределение:
Р (г дефектов в 20 образцах) = (0,4) ' х (0,6)
^'^"У.'^С,,
Г
=
О,
1 20;
Р (14 или больше дефектов)» Р(14) + Р(15) + Р(16) + Р(17) + Р(18) + Р(19) + Р(20);
Р (14) - 0,4"
X
0,6*
X
^|5L . 0,004854:
Р (15)
=
0,4"
X
0,6^
X
-jl^L
=
0,001294;