234 Modeling and Control of Vibratio n in Mechanical Systems
FIGURE 12.4
SSTW servo l oop modeling in two dimensions.
i = 0, 1, 2 , ···, L: the ith track.
j · T
s
: time with j = 0 , 1, 2, ···, K −1.
As shown in Figu re 12.4, y(i, j) i s the p osition of the write head at track i in the
radial dimension and ti me j · T
s
in the axial dimension and P ES(i, j) the po sition
error. y(i − 1, j) (i.e., y(j − K)) represents the track profile of the (i − 1)-th track.
Similarly, P ES(i − 1, j) represents the position error of the (i − 1)-th tr ack. The
read head follows the track y(i − 1, j) which is the reference input for the SSTW
servo system, i.e., one revolution of y(i, j) becomes the reference of the next written
track due to the action of self-servo track writi ng.
Based on Figure 12.4, we have
x
p
(i, j + 1) = A
p
x
p
(i, j) + B
p
(u(i, j) + d
1
(i, j)), (12.26)
y(i, j) = C
p
x
p
(i, j) + D
p
(u(i, j) + d
1
(i, j)) + d
2
(i, j), (12.27)
P ES(i, j) = y(i − 1, j) − y(i, j) + n(i, j). (12.28)
Denote x
p
, x
d
1
, x
d
2
and x
n
the corresponding state vectors of P (z), D
1
(z), D
2
(z)
and N(z), respectively. Let
x
h
(i + 1, j) = y(i, j), x
h
∈ R
n
h
, x
v
∈ R
n
v
,
x
v
(i, j + 1)
T
= [x
p
(i, j + 1)
T
x
d
1
(i, j + 1)
T
x
d
2
(i, j + 1)
T
x
n
(i, j + 1)
T
],
e(i, j) = P ES(i, j), w(i, j)
T
= [w
1
(i, j)
T
w
2
(i, j)
T
w
3
(i, j)
T
], (12.29)
it follows from (12.26)−(12.28 ) that
x
h
(i + 1, j)
x
v
(i, j + 1)
= A
x
h
(i, j)
x
v
(i, j)
+ B
1
w(i, j) + B
2
u(i, j), (12.30)
y(i, j) = C
1
x
h
(i, j)
x
v
(i, j)
+ D
11
w(i, j) + D
12
u(i, j), (12.31)