Bibliography
387
[93] G. Stampacchia,
Equations
elliptiques
du
second
ordre
a coefficients
dis-
continues.
S6m. Math. Sup.
16,
Les Presses
de
l'Universite de Montreal,
Montreal
(1966).
[94] S. Tacklind,
Sur
les classes quasianalitiques des solutions des
~quations
aux
deriWe partielles du type parabolique, Acta Reg. Soc. Sc. Uppsaliensis (Ser.
4) 10, # 3 (1936), pp.
3-55.
[95]
P.
Tolksdorff, Everywhere regularity for some quasi-linear systems with
lack
of
ellipticity, Ann. Mat. Pura Appl. 4 #
134
(1983), pp.
241-
266.
[96]
N.S. Trudinger,
On
Harnack type inequalities and their application to quasi-
linear elliptic partial differential equations, Comm. Pure Appl. Math.
20
(1967),
pp.
721-747.
[97] N.S. Trudinger, Pointwise estimates and quasilinear parabolic equations,
Comm. Pure Appl. Math.
21
(1968), pp.
205-226.
[98] A.N. Tychonov, Tbeoremes d'unicite pour I'equation
de
la
chaleur Math.
Sbomik
42 (1935), pp.
199-216.
[99] K. Uhlenbeck, Regularity for a class
of
non-linear elliptic systems, Acta
Math.
138 (1977), pp.
219-240.
[lOO]
N.N. Ural'tceva, Degenerate quasilinear elliptic systems, Zap. Nauk. Sem.
Leningrad Otdel. Math. Inst. Steklov
# 7 (1968), pp.
184-222
(Russian).
[101]
V.
Vespri, £,>0 estimates for non-linear parabolic equations with natural
growth conditions, Rend. Sem. Mat. Univ. Padova (in press).
[102]
V.
Vespri,
On
the local behaviour
of
a certain class
of
doubly non-linear
parabolic equations, Manuscripta Math.
75 (1992), pp.
65-80.
[103]
V.
Vespri, Harnack type inequalities for solutions
of
certain doubly nonlin-
ear
parabolic equations.
J.
Math. Anal. Appl. (in press).
[104] M. Wiegner,
On
Ca-regularity
of
the gradient
of
solutions
of
degenerate
parabolic systems, Ann. Mat.
Pura
Appl. 4 #
145
(1986), pp.
385-405.
[105] D.V. Widder, Positive temperatures in
an
infinite rod, Trans. AMS, #
55
(1944), pp.
85-95.