7. Comparing w and v 309
6-(i). Proof
of
Theorem
1.1
(the
case p>2)
The proof is a consequence
of
Lemma (6.1) and the averaging theory
of
Campanato-Morrey spaces [22,23,33,79]. It can also be proved directly, starting
from (6.2), by arguments similar to those in
§§2
and 3
of
Chap. IX.
7.
Comparing w and v (the case max
{I;
&~2}
<p<2)
Assuming that (x
o
, to)
==
(0, 0), the functions w and v satisfy
(7.1)
8
at
(Vi -
Wi)
- div
(I
Dv
I
P
-
2
DVi
-IDwl
p
-
2
DWi)
= -
!3
8
(al,k(x,
DU)Ui,Zk
-IDulp-2
Ui
,Zk
Ot,k)
uXl
- div
(lDulp-2
DUi
-
IDwl
p
-
2
DWi)
- Bi(x,
t,
w,
Dw),
in
+Q'k
Vi
-
Wi
=0,
on the parabolic boundary
of
+Q'k.
The boxes
Q'k
are formally identical to those introduced in the degenerate case
p > 2.
In
the singular case we will take
TJ
E (
-1,
0). In writing (7.1) we have used
the definitions (2.3) and (2.8). From
(2.3)-(2.4)
we derive the estimate
lal,k(x,
DU)Ui,ZI
-IDulp-2
Ui
,ZI!
$
-yR)..IDulp-l,
i=1,2,
...
,m,
l,k=1,2,
...
,N.
Moreover by Lemma 4.4
of
Chap. I,
IIDuIP-2Dui
-IDwlp-2Dwil
$
-ydD(u
-
w)I
P
-
1
$-y,
since the boundary data g are regular. In the weak formulation
of
(7.1) we take the
testing functions
Vi
-
Wi
modulo a Steklov averaging process, integrate over +
Q'k
and add over i = 1, 2,
...
,
m.
Using the remarks above to estimate the correspond-
ing terms
on
the right hand side gives
(7.2)
//(11ID
(sv +
(1-
s)w) I
P
-
2
dS)
IDw
-
Dvl2
dxdr
+Qk
$
-yR)..
/
/IDuIP-1IDW
- nvl dxdr
+Q~
+
-y
/
/IDW
- Dvl dxdr +
-y
//IBIIW -
vi
dxdr.
+Q~
+Q~