9.
Proof of
Proposition
l.l-(ii)
281
where
A~
and
B:
are defined in (9.1)-(9.2).
We
estimate the first integral by
Lemma 9.1 and the second by using the
'smallness condition' (9.3) and Lemma
7.1.
We
conclude that there exists a constant 'Y='Y(N,p) such that
f
r [I ¥
12
'Y
1J2
V
l/(N+l)
N+2
(9.8) 1
IDul
Du
-
VCr)
dxdr
~
(1
_
u)2N/(N+l)
R .
Q..R(p)
Introduce the vectors wet) by
Vet)
==
Iw(t)l¥w(t),
and observe that
Iw(t)1
~
IJ,
'<It
E
(-1J
2
-
P
(uR?,
0]
.
By
the algebraic Lemma 5.1.
(9.9)
IIIIDu
l
¥
Du
- v(r)1
2
dxd7'
Q"It(p)
~
II(lDu
l
+ Iw(r)I),,-2IDu -
w(7')1
2
dxd7'.
Q"It(p)
We treat separately the cases
p>
2 and 1 < p <
2.
The degenerate case p > 2
We minorise the left hand side
of
(9.9)
by
extending the integration over the
smaller set
A~R'
On
such a set.
(lDul + Iw(t)l)P-2
~
IDul,,-2
~
2
2
-"IJ
P
-
2
•
This with (9.8) yields
[ [ 2
'Y1J
2
v
1
/(N+l)
(9.10)
11
IDu -
W(7')1
dxd7'
~
(1-
u)2N/(N+l)
IQR(IJ)I·
A~1t
Next write
IIIDU
-
w(t)1
2
dxdr =
IIIDU
-
w(7')1
2
dxd7'
+
IIIDU
-
w(7')1
2
dxd7'.
Q"It(p)
A~1t
B~1t
The first integral is estimated in (9.10) and the second is majorised by
21J2
vi
Q R
(IJ)
I.
in view
of
the 'smallness' condition (9.3). We conclude that