7.
The perturbation lemma 269
(7.3) J
~
'Y
ffIIDUIP-2DU
-IVIP-2VIID2UI(ID(ldxdT
QIl(,.)
+ f f
II
Du
I
P
-
2
Du
- IVIP-
2
VIIDu
-
VI(ID
2
(ldxdr
QIl(,.)
==Il+h
By
(5.7)
of
Lemma 5.2 and Schwartz inequality
II
~
~
f
fIDUIP-2ID2UI2(2dxdr
+
i£;~2
f
flDU
-
Vl
2
dxdr,
~W·
~w
and by (5.6)
12
~
'Yp;~2
fflDU -
Vl
2
dxdr.
QIl(")
Combining these estimates in (7.2) proves the Lemma.
Let
8
p
QR/2
(p)
denote the parabolic boundary
of
QR/2
(p).
Consider the
boundary value problem
(7.4)
{
Vi,t
- (IVIP-2
vi
,x;
+
~
-
2)
IVlp-
4
Vt,k
v
i,xlo Vj,i)
Xj
, in Q
R/2
(JL)
Vi
L')pQIl/2(,.)=Ui,
&=
1,2,
...
,m.
The existence
of
a unique solution to (7.4) can be established for example by a
Galerkin
procedureP)
The solution v
==
(vt,
V2,
•••
,
11m)
of
(7.4) is 'regular' in
the interior
of
Q
R/2
(p), in the sense
of
Theorem 6.1. The next lemma compares
U and
v.
LEMMA 7.2.
There
exists a constant
'Y='Y(N,p),
such
thatfor all
0<
p<
R/2
and for every vector V satisfying (5.3),
(7.5) fpDU - Dvl2dxdr
~
'Y
(p_2f!
IDu
-
Vl2dxdr)1I
Qp(")
QIl(")
where
a=mint!;
i}.
f
flDU
-
Vl
2
dxdr,
QIl(")
PROOF:
Write the system (5.1) in the form
!
Ui
- (IVI
P
-
2U
i,Xj +
(p
- 2)IVl
p
-
4
Vt,k
U
i,:t:1o
VjJ)
Xj
=
div
Hi,
i = 1,2,
...
,m,
(1) See Lions
(73).