1150 Part E Modeling and Simulation Methods
site http://www.math.sci.hiroshima-u.ac.jp/∼m-
mat/MT/emt.html
22.8 M. Suzuki: Linear and nonlinear dynamic scal-
ing relations in the renormalization group theory,
Phys. Lett. A 58, 435–436 (1976)
22.9 M. Suzuki: Static and dynamic finite-size scaling
theory based on the renormalization group ap-
proach, Prog. Theor. Phys. 83, 1142–1150 (1977)
22.10 N. Ito: Non-equilibrium critical relaxation of the
three-dimensional Ising model, Physica A 192,
604–616 (1993)
22.11 N. Ito, T. Matsuhisa, H. Kitatani: Ferromagnetic
transition of ±J Isingspinglassmodelonsquare
lattice, J. Phys. Soc. Jpn. 67, 1188–1196 (1998)
22.12 N. Ito, K. Hukushima, K. Ogawa, Y. Ozeki: Nonequi-
librium relaxation of fluctuations of physical
quantities, J. Phys. Soc. Jpn. 69, 1931–1934 (2000)
22.13 Z.B.Li,L.Schülke,B.Zheng:DynamicMonteCarlo
measurement of critical exponents, Phys. Rev. Lett.
74, 3396–3398 (1995)
22.14 Y. Nonomura: New quantum Monte Carlo approach
to ground-state phase transitions in quantum spin
systems, J. Phys. Soc. Jpn. 67, 5–7 (1998)
22.15 Y. Nonomura: New quantum Monte Carlo study
of quantum critical phenomena with Trotter-
number-dependent finite-size scaling and non-
equilibrium relaxation, J. Phys. A 31, 7939–7954
(1998)
22.16 T. Nakamura, Y. Ito: A quantum Monte Carlo algo-
rithm realizing an intrinsic relaxation, J. Phys. Soc.
Jpn. 72, 2405–2408 (2003)
22.17 Y. Ozeki, K. Ogawa, N. Ito: Nonequilibrium re-
laxation analysis of Kosterlitz–Thouless phase
transition, Phys. Rev. E 67, 026007(1–5) (2003)
22.18 Y. Ozeki, K. Kasono, N. Ito, S. Miyashita: Nonequi-
librium relaxation analysis for first-order phase
transitions, Physica A 321, 271–279 (2003)
22.19 Y. Iba: Extended ensemble Monte Carlo, Int. J. Mod.
Phys. C 12, 623–656 (2001)
22.20 A.M. Ferrenberg, R.H. Swendsen: New Monte Carlo
technique for studying phase transitions, Phys.
Rev. Lett. 61, 2635–2638 (1988)
22.21 A.M. Ferrenberg, R.H. Swendsen: Optimized Monte
Carlo data analysis, Phys. Rev. Lett. 63, 1195–1198
(1989)
22.22 A.M. Ferrenberg, D.P. Landau: Critical behavior
of the three-dimensional Ising model: A high-
resolution Monte Carlo study, Phys. Rev. B 44,
5081–5091 (1991)
22.23 B.A. Berg, T. Neuhaus: Multicanonical algorithms
for first order phase transitions, Phys. Lett. B 267,
249–253 (1991)
22.24 B.A. Berg, T. Neuhaus: Multicanonical ensemble:
A new approach to simulate first-order phase tran-
sitions, Phys. Rev. Lett. 68, 9–12 (1992)
22.25 J. Lee: New Monte Carlo algorithm: Entropic sam-
pling, Phys. Rev. Lett. 71, 211–214 (1993)
22.26 P.M.C. de Oliveira, T.J.P. Penna, H.J. Herrmann:
Broad histogram method, Braz. J. Phys. 26, 677–
683 (1996)
22.27 P.M.C. de Oliveira, T.J.P. Penna, H.J. Herrmann:
Broad histogram Monte Carlo, Eur. Phys. J. B 1,
205–208 (1998)
22.28 R.H.Swendsen,B.Diggs,J.-S.Wang,S.-T.Li,
C. Genovese, J.B. Kadane: Transition matrix
Monte Carlo, Int. J. Mod. Phys. C 10,1563–1569
(1999)
22.29 J.-S. Wang, T.K. Tay, R.H. Swendsen: Transition
matrix Monte Carlo reweighting and dynamics,
Phys. Rev. Lett. 82, 476–479 (1999)
22.30 J.-S. Wang: Flat histogram Monte Carlo method,
Physica A 281, 147–150 (2000)
22.31 F. Wang, D.P. Landau: Efficient, multiple-range
random walk algorithm to calculate the density of
states, Phys. Rev. Lett. 86, 2050–2053 (2001)
22.32 F. Wang, D.P. Landau: Determining the density of
states for classical statistical models: A random
walk algorithm to produce a flat histogram, Phys.
Rev. E 64,1–16(2001)
22.33 J. Lee, J.M. Kosterlitz: New numerical method to
study phase transitions, Phys. Rev. Lett. 65,137–140
(1990)
22.34 J. Lee, J.M. Kosterlitz: Finite-size scaling and Monte
Carlo simulations of first-order phase transitions,
Phys. Rev. B 43, 3265–3277 (1991)
22.35 R.H. Swendsen, J.-S. Wang: Nonuniversal critical
dynamics in Monte Carlo simulations, Phys. Rev.
Lett. 58,86–88(1987)
22.36 P.W. Kasteleyn, C.M. Fortuin: Phase transitions
in lattice systems with random local properties,
J. Phys. Soc. Jpn. Suppl. 26, 11–14 (1969)
22.37 C.M. Fortuin, P.W. Kasteleyn: On the random clus-
ter model. I: Introduction and relation to other
models, Physica 57,536–564(1972)
22.38 U. Wolff: Collective Monte Carlo updating for spin
systems, Phys. Rev. Lett. 62, 361–364 (1989)
22.39 P. Tamayo, R.C. Brower, W. Klein: Single-cluster
Monte-Carlo dynamics for the Ising-model, J. Stat.
Phys. 58, 1083–1094 (1990)
22.40 H.G. Evertz, G. Lana, M. Marcu: Cluster algorithm for
vertex models, Phys. Rev. Lett. 70, 875–879 (1993)
22.41 J. Machta, Y.S. Choi, A. Lucke, T. Schweizer,
L.V. Chayes: Invaded cluster algorithm for equilib-
rium critical points, Phys. Rev. Lett. 75, 2792–2795
(1995)
22.42 J. Machta, Y.S. Choi, A. Lucke, T. Schweizer,
L.V. Chayes: Invaded cluster algorithm for Potts
models, Phys. Rev. E 54, 1332–1345 (1996)
22.43 Y. Tomita, Y. Okabe: Probability-changing cluster
algorithm for Potts models, Phys. Rev. Lett. 86,
572–575 (2001)
22.44 N. Prokof’ev, B. Svistunov: Worm algorithms for
classical statistical models, Phys. Rev. Lett. 87,
160601(1–4) (2001)
Part E 22