Chapter 12
Instability
1. Introduction......................... 467
2. Method of Normal Modes ............ 469
3. Thermal Instability: The B´enard
Problem............................. 470
Formulation of the Problem ......... 471
Proof That σ Is Real for Ra > 0 ...... 475
Solution of the Eigenvalue Problem
with Two Rigid Plates ............. 477
Solution with Stress-Free Surfaces . . . 480
Cell Patterns ........................ 481
4. Double-Diffusive Instability .......... 482
Finger Instability .................... 482
Oscillating Instability ................ 485
5. Centrifugal Instability:
Taylor Problem ..................... 486
Rayleigh’s Inviscid Criterion ......... 486
Formulation of the Problem ......... 488
Discussion of Taylor’s Solution ....... 490
6. Kelvin–Helmholtz Instability ......... 493
7. Instability of Continuously
Stratified Parallel Flows ............. 500
Taylor–Goldstein Equation .......... 500
Richardson Number Criterion........ 503
Howard’s Semicircle Theorem ....... 504
8. Squire’s Theorem and
Orr–Sommerfeld Equation ........... 507
Squire’s Theorem.................... 509
Orr–Sommerfeld Equation........... 509
9. Inviscid Stability of Parallel Flows . . 510
Rayleigh’s Inflection Point Criterion . 511
Fjortoft’s Therorm ................. 511
Critical Layers ..................... 512
10. Some Results of Parallel Viscous
Flows .............................. 514
Mixing Layer ...................... 515
Plane Poiseuille Flow ............... 516
Plane Couette Flow................. 516
Pipe Flow .......................... 516
Boundary Layers with Pressure
Gradients ........................ 517
How can Viscosity Destabilize a
Flow? ........................... 519
11. Experimental Verification of
Boundary Layer Instability ......... 520
12. Comments on Nonlinear Effects ..... 522
13. Transition .......................... 523
14. Deterministic Chaos ................ 525
Phase Space ....................... 526
Attractor........................... 527
The Lorenz Model of Thermal
Convection ...................... 528
Strange Attractors .................. 530
Scenarios for Transition to Chaos . . . 531
Closure ............................ 533
Exercises ........................... 533
Literature Cited .................... 535
1. Introduction
A phenomenon that may satisfy all conservation laws of nature exactly, may still
be unobservable. For the phenomenon to occur in nature, it has to satisfy one more
condition, namely, it must be stable to small disturbances. In other words, infinitesi-
mal disturbances, which are invariably present in any real system, must not amplify
467
©2010 Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-0-12-381399-2.50012-5