
358 10 Particle Identification by Measurement of Ionization
measured ratio
δ
I/(IR), which we have computed in the last line of Table 10.4.
The best figure of merit belongs to the OPAL Jet Chamber; for it we show the
scatter diagram of ionization strength versus particle momentum in Fig. 10.18. The
OPAL r.m.s. particle-separation power D for various pairs of particles is plotted in
Fig. 10.19 as a function of momentum. The quantity D
12
is defined as the ratio of
the difference of the ionization strengths of the two particles 1 and 2 to the average
resolution
D
12
=
|I
1
−I
2
|
(
δ
I
1
/I
1
+
δ
I
2
/I
2
)/2
.
Experimentally, the two terms in the denominator are equal.
References
[ALL 80] W.W.M. Allison, Relativistic charged particle identification by energy-loss, Ann.
Rev. Nucl. Sc. 30, 253 (1980)
[ALL 82] W.W.M. Allison, Relativistic particle identification by dE/dx: the fruits of experi-
ence with ISIS, in Int. Conf. for Colliding Beam Physics, SLAC, 61 (1982)
[ALL 84] W.W.M. Allison, C.B. Brooks, P.D. Shield, M. Aguilar Benitez, C. Willmot,
J. Dumarchez and M. Schouten, Relativistic charged particle identification with
ISIS2, Nucl. Instrum. Methods Phys. Res. 224, 396 (1984)
[ASS 90] R. Assmann, Ionisationsmessung und Teilchenidentifizierung in der zentralen
Spurendriftkammer (TPC) von ALEPH, Diploma Thesis University of Munich
1990, unpublished
[ASS 91] We thank R. Assmann (Munich) for the computation of the fits
[ATW 91] W.B. Atwood et al., Performance of the ALEPH time projection chamber, Nucl.
Instrum. Methods Phys. Res. A 306, 446 (1991)
[BAR 83] V. Baruzzi et al., Use of a large multicell ionization detector – the External Particle
Identifier – in experiments with the BEBC hydrogen bubble chamber, Nucl. Instrum.
Methods 207, 339 (1983)
[BLU 74] W. Blum, K. S
¨
ochting, U. Stierlin, Gas Phenomena in spark chambers, Phys. Rev. A
10, 491 (1974)
[BRE 87] H. Breuker et al., Particle identification with the OPAL jet chamber in the region of
the relativistic rise, Nucl. Instrum. Methods Phys. Res. A 260, 329 (1987)
[COW 88] G.D. Cowan, Inclusive
π
,Kandp,p
−
production in e
+
e
−
annihilation at
√
s =
29 GeV, Dissertation, University of California, Berkeley (1988), also Berkeley
preprint LBL-24715
[CRA 51] H. Cram
´
er, Mathematical Methods of Statistics (Princeton University Press 1951)
[DAV 69] V.A. Davidenko, B.A. Dolgoshein, V.K. Semenov, S.V. Somov, Measurements of
the relativistic increase of the specific primary ionization in a streamer chamber,
Nucl. Instrum. Methods 67, 325 (1969)
[EAD 71] W.T. Eadie, D. Dryard, F.E. James, M. Roos, B. Sadoulet, Statistical Methods in
Experimental Physics (North-Holland, Amsterdam 1971)
[ERM 77] V.C. Ermilova, L.P. Kotenko and G.I. Merzon, Fluctuations and the most probable
values of relativistic charged particle energy loss in thin gas layers, Nucl. Instrum.
Methods 145, 555 (1977)
[FIS 58] M. Fisz, Wahrscheinlichkeitsrechnung und mathematische Statistik (translated from
Polish) (VEB Verlag der Wissenschaften, Berlin
11
1989)
[GOL 85] D. Goloskie, V. Kistiakowsky, S. Oh, I.A. Pless, T. Stroughton, V. Suchorebrow,
B. Wadsworth, O. Murphy, R. Steiner and H.D. Taft, The performance of CRISIS
and its calibration, Nucl. Instrum. Methods Phys. Res. A 238, 61 (1985)