
c In each of Exercises 17224, calculate the length of the
given parametric curve. b
17. x 5 3t 2 7 y 5 5 2 4t 21 # t # 1
18. x 5 5t 2 7 y 5 12t 2 # t # 7
19. x 5 4
cos(2t) y 5 4 sin(2 t) 2π/6 # t # π/6
20. x 5 sin(πt
2
) y 5 cos(πt
2
)0# t # 1
21. x 5 3t
2
y 5 2t
3
0 # t # 1
22. x 5 exp(2t) y 5 exp(3t) 21 # t # 1
23. x 5 e
t
cos(t) y 5 e
t
sin(t)0# t # 1
24. x 5 cos
3
(t) y 5 sin
3
(t)0# t # π/2
c In each of Exercises 25230, calculate the area S of
the
surface obtained when the graph of the given function is
rotated about the x-axis. b
25. f (x) 5 3x 2 1
[1, 4]
26. f (x) 5 x
3
/3 [0, 1]
27. f (x) 5 3x
1/2
[7/4, 4]
28. f (x) 5 x
3
/3 1 1/(4x) [1, 2]
29. f (x) 5 e
x
/2 1 e
2x
/2 [21, 1]
30. f (x) 5 (x 1 1)
1/2
[1, 11]
c In each of Exercises 31234, calculate the area S of
the
surface obtained when the given function, over the given
interval, is rotated about the y-axis. b
31. f (x) 5 x/4 2 2
[8, 12]
32. f (x) 5 x
2
[0,
ffiffiffi
2
p
]
33. f (x) 5 x
1/3
[0, 8]
34. f (x) 5 (3x)
1/3
[0, 1/3]
Further Theory and Practice
c In Exercises 35238, calculate the arc length L of the graph
of the given equation. b
35. y 5
1
2
x
2
0 # x # 1.
36. y 5 ln(x)1# x # e.
37. y 5 2
ffiffiffi
x
p
1/3 # x # 1.
38. y 5 lnðx
2
2 1Þ
ffiffiffi
2
p
# x #
ffiffiffi
3
p
.
c In each of Exercises 39244, calculate the arc length of the
graph
of the given function over the given interval. (In these
exercises, the functions have been contrived to permit a
simplification of the radical in the arc length formula.) b
39. f (x) 5 (1/3)(x
2
1 2)
3/2
I 5 [0, 1]
40. f (x) 5 (1/6)x
3
1 (1/2)x
2 1
I 5 [1, 2]
41. f (x) 5 e
x
/2 1 e
2x
/2 1 7 I 5 [0, 1]
42. f (x) 5 (2
x
1 2
2 x
)/(2 ln(2)) I 5 [0, 2]
43. f (x) 5 2x
4
1 1/(64x
2
) I 5 [1/2, 1]
44. f (x) 5
2x
1/2
1
9
4
3=2
I 5 [1/4, 1]
c In each of Exercises 45252, calculate the length L of
the
given parametric curve. b
45. x 5 t cos(t) y 5 t sin(t)0# t # 3π
46. x 5 t
2
cos(t) y 5 t
2
sin(t)0# t #
ffiffiffi
5
p
47. x 5
1
2
t
2
2 ty5
1
2
t
2
1 t 0 # t # 1
48. x 5 cos(t) 1 t sin(t) y 5 sin(t) 2 t cos(t)0# t # 2π
49. x 5 t 2 sin(t) y 5 1 2 cos(t)0# t # 2π
50. x 5 2 arctan(t) y 5 ln(1 1 t
2
)0# t # 1
51. x 5 cos(t) 1 ln(tan(t/2)) y 5 sin(t) π/3 # t # π/2
52. x 5 3 exp(t) y 5 2 exp
3
2
t
0 # t # 1
53. Find the arc length of the graph of y
4
2 16x 1 8/y
2
5 0
between P 5 (9/8, 2) and Q 5 (9/16,1).
54. Find the arc length of the graph of 30yx
3
2 x
8
5 15
between P 5 (0.1, 500.0 ...) and Q 5 (1, 8/15).
55. Suppose that f is a function with a continuous derivative
on an open interval containing [a, b]. Let C be the graph of
f over the interval [a, b], and let C
0
be the curve with
endpoints (a 1 h, f (a) 1 v) and (b 1 h, f (b) 1 v), is
obtained by translating C horizontally by an amount h and
vertically by an amount v. Prove that the lengths of C and
C
0
are equal.
56. Suppose that a . b . 0. Let ε 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
2
2 b
2
p
=a. Show that,
for any 0 , ξ , a, the length L(ξ) of the arc of the ellipse
x
2
/a
2
1 y
2
/b
2
5 1 that lies above the interval [0, ξ] of the
x-axis integral is given by
Lðξ Þ5
Z
ξ
0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
2
2 ε
2
x
2
a
2
2 x
2
r
dx:
Make a change of variable to write L(ξ) in terms of the
elliptic integral
Eðε; ηÞ5
Z
η
0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 ε
2
sin
2
ðtÞ
q
dt:
Although elliptic integrals cannot be evaluated using
elementary functions, they are built into computer alge-
bra systems, and their values have been tabulated.
57. Suppose that a . b . 0. Let ε 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
2
2 b
2
p
=a, as in the
preceding exercise. Parameterize the ellipse x
2
/a
2
1 y
2
/
b
2
5 1 by the equations x 5 a sin(t), y 5 b cos(t),
(0 # t # 2π). Let L(τ) denote the arc length of that part of
the ellipse that is given by 0 # t # τ # π/2. Express L(τ)in
terms of the function E(ε, η) of the preceding exercise.
c In each of Exercises 58261, calculate the area S of
the
surface obtained when the graph of the given function is
rotated about the x-axis. b
58. f ðxÞ5 expðxÞ 0 # x # 1.
59. f ðxÞ5 x
4
1
1
32
x
22
1=2 # x # 1
60. f ðxÞ5 sinðxÞ 0 # x # π=2
61. f ðxÞ5
3x
4
1 1
6x
1 # x # 2
62. When the right circular cone of slant height ‘ and base radius
R is cut alonga lateral edge andflattened, it becomes a sector
of a circle of radius ‘ and central angle θ, as in Figure 10.
Prove that θ 5 2πR/‘. Use this observation to derive formula
(7.2.7) for the surface area of a frustum of a cone.
560 Chapter 7 Applications of the Integral