300
S. Agmon, A. Doughs, L. Nirenberg, Estimates near the boundary for solutions of
elliptic partial diffrential equations satisfying general boundary conditions. Comm.
Pure Appl. Math., 12, 1959, 623-727; 17,1964, 35-92.
P.
Benevieri, M. Furi, A simple notion of orientability for Predholm maps of index
zero between Banach manifolds and degree. Annales des Sciences Mathematiques du
Quebec 22 (1998) 131-148.
E.N. Dancer, Boundary-value problems for ordinary differential equations on infinite
intervals. Proc. London Math. Soc. (3) 30 (1975) 76-94
A. Doughs, L. Nirenberg, Interior estimates for elliptic systems of partial differential
equations. Comm. Pure Appl. Math. 8 (1955), 503-538.
K. D. Elworthy, A. J.Tromba, Degree theory on Banach manifolds. Proc. Symp. Pure
Math. AMS (1970) 86-94
C.C. Fenske, Extensio gradus ad quasdam applicationes Fredholmii. Mitt. Math.
Seminar, Giessen, 121 (1976) 65-70.
P.
Fitzpatrick, J. Pejsachowicz, Orientation and the Leray-Schauder theory for fully
nonlinear boundary value problems. Memoirs of the AMS, 1993, 101, No. 483.
V.A. Kondratiev, Boundary value problems for elliptic equations in domains with
conical or angular points. Trudy Moskov. Mat. Obshch. 16 (1967), pp. 209 - 292.
English transl. in: Trans. Math. Soc. 16 (1967).
R.B.
Lockhart, Fredholm property of a class of elliptic operators on non-compact
manifolds. Duke Math. J., 48 (1981), pp. 289 - 312.
J. Mawhin, Topological degree methods in nonlinear boundary value problems. Con-
ference Board of Math. Sciences, AMS, No. 40.
E.M. Mukhamadiev, Normal solvability and the noethericity of elliptic operators in
spaces of functions on R". Part I, Zap. Nauch. Sem. LOMI, 110 (1981), 120-140.
English transl. in J. Soviet Math., 25(1) (1984),
884-901.
S.A. Nazarov, K. Pileckas, On the Fredholm property of the Stokes operator in a
layer-like domain. J. Anal. Appl., 20 (2001), No. 1, pp. 155 - 182.
J. Pejsachowicz, P. Rabier, Degree theory for C
1
Fredholm mapping of index 0. J.
Anal. Math. 76 (1998) 289 - 319.
F.
Quinn, A. Sard, Hausdorff conullity of critical images of Fredholm maps. Amer.
J. Math. 94 (1972) 1101 - 1110.