314
where L is the unique solution of (1), (2)
2
and (2)
3
, A(F) is the unique solution of the
forthcoming problem (14) and :
D = {g(x,
f
i,X)eL
i
((0,<x);L°°(Cl)):L
0
(T_,X)<g(x,fi,X)<L
0
(T
+
,X)}
U_ = {FeL
x>
{Q,E):Ma
a
L°{T
r
)<F<Ma
a
L
0
(T
+
)}
D = {ueC{[0,E]) :T_<u<?+}
/
u
\
c
(s)ds
o
/
OO pi
/
&
a
(/^
A)
L (x, //,
A) dftdX
/
OO />1
/ o-
a
{n,\)f{x,fi,\)diJ,d\.
(12)
We prove that the application T is completely continuous [8] from D to D and using
Schauder's fixed point theorem the existence of a solution is established.
Now, we give some intermediate results. For the details of the proofs, we refer the
reader to [2], [3].
Lemma 2.2 Let E £ (0, oo) and parameters T
0
, T
E
, a
a
, o
s
and P be given and assume
that all the above assumptions are satisfied. Let the functions H,
<po
and
<J>E
be given in
L
1
((0, oo); C (fi)), L
1
((0, oo); C ((0,1])) and L
1
((0, oo); C ([-1,0))), respectively. Then,
the following boundary value problem has a unique solution in the space E
H—(x,fi,\) + a
e
(iJ.,X)L(x,ii,\) = (AL)(x,n,\) + H(x,n,\)
V(x,At,A)enx(0,oo), (13)
L(x,n,X) = <t>
0
(fi,X) V(x,/x,A) e dQ
+
x (0, oo),
L(x,n,\) = 4>o{f-,X) V(x,/x,A) G 9f2~ x (0, oo),
where A is the linear integral operator defined for all
ip
6 L
1
((0, oo); L°° (O)) by:
1 f
1
(A<p){x,fj.,\) = - (7,(n',X)P(n'-*fi,X)ip(x,^',X)dfi', V(i,/i,A)€f!x(0,oo).
Proof of the Lemma
Let r be the map from (E, ||-||
loo
) —» (E,
||.||
1OO
)
defined as : L =
r(<p),
for
<p
€ E,
where L is the the solution of :
^~Q^{x,lJ.,X) + a
e
(fj,,X)L(x,iJ,,X) = (A<p)(x,/i,X) + H(x,fj,,X)
V(X,/J,A)
GOx
(0,oo),
L(x,n,X) = 4>o(n,X) V(x,/i,
A)
6 <9£2+ x (0, oo),
L(x,(i,X) =
<j>o(fJ;X) V
(a;,
/i,
A)
e 9f2~ x (0, oo),
For 0 < ^i < 1, we have :
L (x,
M)
A)
= - f
X
exp f- (x - y) ^tlR\
{Aip
+
H
) (y, p,
A)
dy
A*
y o v t
1
j
+
exp
(-z^^)
0o
(^ A).