l
∂
2
u
∂t
2
= a
2
∂
2
u
∂x
2
Q
T
= (0, l) × (0, T ] 0 < T < ∞
u|
x=0
= 0, u|
x=l
= 0 (0, T ]
u|
t=0
= ϕ
0
(x),
∂u
∂t
t=o
= ϕ
1
(x)
(0, l).
a > 0
ϕ
0
ϕ
1
u
u(x, t) = T (t)X(x).
T (t) X(x)
T
′′
(t)X(x) = a
2
T (t)X
′′
(x).
a
2
XT
T
′′
(t)
a
2
T (t)
=
X
′′
(x)
X(x)
.