Bibliography 341
[36] J. Franks and M. Misiurewicz, Topological methods in dynamics. In Handbook of
dynamical systems, Vol. 1A, ed. B. Hasselblatt and A. Katok, North-Holland, Ams-
terdam, 2002, 547–599. 181
[37] H. Fürstenberg, Recurrence in ergodic theory and combinatorial number theory. M.B.
Porter lectures. Princeton University Press, Princeton, NJ, 1981. 45
[38] A. M. Garsia, Topics in almost everywhere convergence. Lectures in Adv. Math. 4,
Markham Publishing, Chicago, Ill., 1970.
[39] C. Genecand, Transversal homoclinic orbits near elliptic fixed points of area-
preserving diffeomorphisms of the plane. In Dynamics reported, Dynam. Report.
Expositions Dynam. Systems (N.S.) 2, Springer-Verlag, Berlin, 1993, 1–30. 238
[40] V. L. Ginzburg, Hamiltonian dynamical systems without periodic orbits. In Northern
California symplectic geometry seminar, ed. by Ya. Eliashberg et al., Amer. Math.
Soc. Transl. Ser. 196, Amer. Math. Soc., Providence, RI, 1999, 35–48. 317
[41] V. L. Ginzburg, The Hamiltonian Seifert conjecture: examples and open problems. In
Proceedings of the third European Congress of Mathematics (Barcelona 2000), Vol.
II, Progr. Math. 202, Birkhäuser, Basel, 2001, 547–555. 338
[42] V. L. Ginzburg, The Weinstein conjecture and theorems of nearby and almost exis-
tence. In The breath of symplectic and Poisson geometry, Festschrift in Honor of Alan
Weinstein, ed. by J. E. Marsden and T. S. Ratiu. Birkhäuser, Boston, Mass., 2005,
139–172. 338
[43] V. L. Ginzburg and B. Z. Gürel, A C
2
-smooth counterexample to the Hamiltonian
Seifert conjecture in R
4
. Ann. of Math. (2) 158 (2003), 953–976. 317
[44] V. L. Ginzburg and B. Z. Gürel, Relative Hofer-Zehnder capacity and periodic orbits
in twisted cotangent bundles. Duke Math. J. 123 (1) (2004), 1–47.
[45] C. Godbillon, Géométrie différentielle et mécanique analytique. Collection Méthodes,
Hermann, Paris, 1969. 238
[46] L. Grafakos, Classical and modern Fourier analysis. Prentice Hall, Upper Saddle
River, NJ, 2004. 35
[47] J. Hadamard, Sur l’iteration et les solutions asymptotiques des équations differen-
tielles. Bull. Soc. Math. France 29 (1901), 224–228. 80
[48] B. Hasselblatt, Hyperbolic dynamical systems. Chapter 5 in Handbook of dynamical
systems, Vol. 1 A, ed. by B. Hasselblatt and A. Katok, North-Holland, Amsterdam,
2002. 126
[49] B. Hasselblatt and A. Katok, Introduction to the modern theory of dynamical systems.
Encyclopedia Math. Appl. 54, Cambridge University Press, Cambridge, 1995. 45,
120, 123, 126
[50] B. Hasselblatt and A. Katok (eds.), Handbook of dynamical systems. Vol. 1A, North-
Holland, Amsterdam, 2002. 45
[51] H. Hofer and E. Zehnder, A new capacity for symplectic manifolds. In Analysis, et
cetera, ed. by P. Rabinowitz and E. Zehnder, Academic Press, Boston, Mass., 1990,
405–427 260