340 Bibliography
[17] A. Chenciner, Le dynamique au voisinage d’un point fixe elliptique conservatif: de
Poincaré et Birkhoff à Aubry et Mather. Séminaire Bourbaki, Astérisque 121/122
(1984), 147–170. 238
[18] K. Cieliebak, H. Hofer, J. Latschev and F. Schlenk, Quantitative symplectic geometry.
In Dynamics, ergodic theory, and geometry, Math. Sci. Res. Inst. Publ. 54, Cambridge
University Press, Cambridge, 2007, 1–44. 306
[19] C. Conley, Isolated invariant sets and the Morse index. CBMS Reg. Conf. Ser. in
Math. 38, Amer. Math. Soc., Providence, RI, 1978. 181
[20] C. Conley and E. Zehnder, Morse-type index theory for flows and periodic solutions
for Hamiltonian equations. Comm. Pure Appl. Math. 37 (1984), 207–253. 181
[21] L. Conlon, Differentiable manifolds. 2nd edition, Birkhäuser Adv. Texts, Birkhäuser,
Boston, Mass., 2001. 164, 180, 206, 229
[22] O. Cornea, G. Lupton, J. Oprea, and D. Tanré, Lusternik–Schnirelman category. Math.
Surveys Monogr. 103, Amer. Math. Soc., Providence, RI, 2003. 160, 161
[23] I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai, Ergodic theory. Grundlehren Math. Wiss.
245, Springer-Verlag, Berlin, 1982. 45
[24] R. H. Cushman and L. M. Bates, Global aspects of classical integrable systems. Birk-
häuser, Basel, 1997. 194
[25] B. Dacorogna and J. Moser, On a partial differential equation involving the Jacobian
determinant. Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1) (1990) 1–26. 240
[26] K. Deimling, Nonlinear functional analysis. Springer-Verlag, Berlin, 1985. 159, 160,
161, 299
[27] R. L. Devaney, An introduction to chaotic dynamical systems. 2nd edition, Stud.
Nonlinearity, Westview Press, Boulder, CO, 2003.
[28] A. Dold, Lectures on algebraic topology. 2nd edition, Grundlehren Math. Wiss. 200,
Springer-Verlag, Berlin, 1980.
[29] J. Duistermaat, Stable manifolds. Preprint No. 40, Department of Mathematics, Uni-
versity of Utrecht, 1976. 80
[30] J. Duistermaat, Fourier integral operators. Progr. Math. 130, Birkhäuser Verlag,
Boston, Mass., 1996. 238
[31] H. Dym and H. P. McKean, Fourier series and integrals. 2nd print., Academic Press,
New York, 1974. 35
[32] R. W. Easton, Geometric methods for discrete dynamical systems. Oxford Engrg. Sci.
Ser. 50, Oxford University Press, New York, 1998.
[33] I. Ekeland and H. Hofer, Symplectic topology and Hamiltonian dynamics. Math. Z.
200 (1989), 355–378. 252
[34] I. Ekeland and H. Hofer, Symplectic topology and Hamiltonian dynamics II. Math. Z.
203 (1990), 553–567. 252
[35] B. Fiedler (ed.), Handbook of dynamical systems
. Vol. 2, North-Holland, Amsterdam,
2002. 45