308 BIBLIOGRAPHY
[10] S. Chen, W. E and C. W. Shu, “The heterogeneous multiscale method based on
the discontinuous Galerkin method for hyperbolic and parabolic problems,” SIA M
MMS, vol. 3, pp. 871–894, 2005.
[11] A. J. Chorin, “A numerical method for solving incompressible viscous flow prob-
lems,” J. Comput. Phys., vol. 2, pp. 12–26, 1967.
[12] A.J. Chorin, A.P. Kast and R. Kupferman, “Optimal prediction of u nderresolved
dynamics,” Proc. N atl. Acad. Sci. USA, vol. 95, no. 8, pp. 4094–4098, 1998.
[13] A.J. Chorin, O. H. Hald and R. Kupferman, “Optimal p rediction with memory,”
Physica D, vol. 166, pp. 239–257, 2002.
[14] S. Curtarolo and G. Ceder, “Dynamics of an inhomogeneously coarse grained mul-
tiscale system,” Phys Rev Lett., vol. 88, pp. 255504–255504-4, 2002.
[15] G. Dahlquist and A. Bj¨orck, Numerical Methods, Prentice-Hall, Inc., 1974.
[16] S. M. Deshpande, “Kinetic flux splitting schemes,” Computational Fluid Dynamics
Review, pp. 161–181, 1995.
[17] W. E, “Analysis of the heterogeneous multiscale method for ordinary differential
equations,” Comm. Math. Sci., vol. 1, no. 3, pp. 423–436, 2003.
[18] W. E and B. Engquist, “The h eterogeneous multi-scale methods,” Comm. Math.
Sci., vol. 1, pp. 87–133, 2003.
[19] W. E and B. Engquist, “Multiscale modeling and computation,” Notices of the AMS,
vol. 50, no. 9, pp. 1062–1070, 2003.
[20] W. E, B. Engquist, X. Li, W. Ren and E. Vanden-Eijnden, “Heterogeneous multi-
scale methods: A review,” Comm. Comput. Phys., vol. 3, no. 3, pp. 367–450, 2007.
[21] W. E and X. Li, “Analysis of the heterogeneous multiscale method for gas dynamics,”
Methods Appl. Anal., vol. 11, pp. 557–572, 2004.
[22] W. E, D. Liu and E. Vanden-Eijnden, “Analysis of multiscale methods for stochastic
differential equations,” Comm. Pure Appl. Mat h., vol. 58, no. 11, pp. 1544–1585,
2005.