Marchese, A., Chen, C., Kim, Y.-M., and Benkovic, J.L., The in
and outs of G protein-coupled receptor trafficking, Trends
Biochem. Sci. 28, 369–376 (2003). [Reviews mechanisms of de-
sensitization.]
Okada, T., Sugihara, M., Bondar, A.-N., Elstner, M., Entel, P.,
and Buss, V., The retinal conformation and its environment in
rhodopsin in light of a new 2.2 Å crystal structure, J. Mol. Biol.
342, 571–583 (2004).
Oldham,W.M. and Hamm, H.E., Heterotrimeric G protein activa-
tion by G-protein-coupled receptors, Nature Rev. Mol. Cell
Biol. 9, 60–71 (2008); and Structural basis of function in het-
erotrimeric G proteins, Q. Rev. Biophys. 39, 117–166 (2006).
Palczewski, K., G protein–coupled receptor rhodopsin, Annu. Rev.
Biochem. 75, 743–767 (2006).
Rasmussen, S.G.F., et al., Crystal structure of the human 
2
adren-
ergic G-protein-coupled receptor, Nature, 450, 383–387 (2007);
and Cherezov, V., et al., High-resolution crystal structure of an
engineered human 
2
adrenergic G protein–coupled receptor,
Science 318, 1259–1265 (2007).
Reiter, E. and Lefkowitz, R.J., GRKs and -arrestins: roles in
receptor silencing,trafficking and signaling, Trends Endocrinol.
Metab. 17, 159–165 (2006).
Scheerer, P., Park, J.H., Hildebrand, P.W., Kim, Y.J., Krauss, N.,
Choe, H.-W., Hofmann, K.P., and Ernst, O.P., Crystal structure
of opsin in its G-protein-interacting conformation, Nature 455,
497–502 (2008). [Proposes a structural model for the activation
by opsin of its corresponding heterotrimeric G protein.]
Soundararajan, M., et al., Structural diversity in the RGS domain
and its interaction with hetertrimeric G protein ␣-subunits,
Proc. Natl. Acad. Sci. 105, 6457–6462 (2008).
Sprang, S.R. (Ed.), Mechanisms and Pathways of Heterotrimeric
G Protein Signaling, Adv. Prot. Chem. 74 (2007).
Tesmer, J.J.G. and Sprang,S.R.,The structure, catalytic mechanism
and regulation of adenylyl cyclase, Curr. Opin. Struct. Biol. 8,
713–719 (1998).
Tesmer, J.J.G., Sunahara, R.K., Gilman, A.G., and Sprang, S.R.,
Crystal structure of the catalytic domains of adenylyl cyclase in
a complex with G
s␣
ⴢ GTP␥S, Science 278, 1907–1916 (1997).
Tobin, A.B., Butcher, A.J., and Kong, K.C., Location, location, lo-
cation....Site-specific GPCR phosphorylation offers a mech-
anism for cell-type-specific signaling, Trends Pharm. Sci. 29,
5–12 (2008).
Vetter, I.R., and Wittinghofer,A.,The guanine nucleotide–binding
switch in three dimensions, Science 294, 1299–1304 (2001).
Wall, M.A., Coleman, D.E., Lee, E., Iñiguez-Lluhi, J.A., Posner,
B.A., Gilman, A.G., and Sprang, S.R., The structure of the G
protein heterotrimer G
i␣1

1
␥
2
, Cell 83, 1047–1058 (1995); and
Lambright, D.G., Sondek, J., Bohm, A., Skiba, N.P., Hamm,
H.E., and Sigler, P.B., The 2.0 Å crystal structure of a het-
erotrimeric G protein, Nature 379, 311–319 (1996).
Weis, W.I., and Kobilka, B.K., Structural insights into G-
protein-coupled receptor activation, Curr. Opin. Struct. Biol.
18, 734–740 (2008); and Deupi, X. and Kobilka, B., Activation
of G protein–coupled receptors, Adv. Protein Chem. 74,
137–165 (2007).
Willars, G.B., Mammalian RGS proteins: Multifunctional regula-
tors of cell signaling, Semin. Cell Dev. Biol. 17, 363–376 (2006).
Zhang, R.-G., Scott, D.L., Westbrook, M.L., Nance, S., Spangler,
B.D., Shipley, G.G., and Westbrook, E.M.,The three-dimensional
crystal structure of cholera toxin, J. Mol. Biol. 251, 563–573
(1995); and Merrrit, E.A., Sarfaty, S., Jobling, M.G., Chang, T.,
Holmes, R.K., Hirst,T.R., and Hol,W.G.J., Structural studies of
receptor binding by cholera toxin mutants, Protein Sci. 6,
1516–1528 (1997).
Tyrosine Kinase–Based Signaling
Alonso, A., et al., Protein tyrosine phosphatases in the human
genome, Cell 117, 699–711 (2004). [A review that enumer-
ates, classifies, and discusses the functions of all human
PTPs.]
Beene, D.L. and Scott, J.D., A-kinase anchoring proteins take
shape, Curr. Opin. Cell Biol. 19, 192–198 (2007).
Bhattacharyya, R.P., Reményi, A., Yeh, B.J., and Lim, W.A.,
Domains, motifs and scaffolds: The role of modular interac-
tions in the evolution and wiring of cell signaling circuits,
Annu. Rev. Biochem. 75, 655–680 (2006).
Boggon, T.J. and Eck, M.J., Structure and regulation of Src family
kinases, Oncogene 23, 7918–7927 (2004).
Bollen, M., Combinatorial control of protein phosphatase-1,
Trends Biochem. Sci. 26, 426–431 (2001).
Boriak-Sjodin, P.A., Margarit, S.M., Bar-Sagi, D., and Kuriyan, J.,
The structural basis of the activation of Ras by Sos, Nature 394,
337–343 (1998).
Bos, J.L., Rehmann, H., and Wittinghofer, A., GEFs and GAPs:
Critical elements in the control of small G proteins, Cell 129,
865–877 (2007).
Baselga, J.,Targeting tyrosine kinases in cancer:The second wave,
Science 312, 1175–1178 (2006).
Calderwood, S.K., Khaleque, M.A., Sawyer, D.B., and Ciocca,
D.R., Heat shock proteins in cancer: chaperones of tumorigen-
esis, Trends Biochem. Sci. 31, 164–172 (2006).
Capdeville, R., Buchdunger, E., Zimmermann, J., and Matter, A.,
Glivec (STI571, ImatinIB), a rationally developed targeted an-
ticancer drug, Nature Rev. Drug Discov. 1, 493–502 (2002).
[Glivec was the previous name of Gleevec.]
Carlisle Michel, J.J. and Scott, J.D., AKAP mediated signal
transduction, Annu. Rev. Pharmacol. Toxicol. 42, 235–257
(2002).
Cho, U.S. and Xu, W., Crystal structure of a protein phosphatase
2A heterotrimeric holoenzyme, Nature 445, 53–57 (2007); and
Xu,Y., Xing,Y., Chen,Y., Chao,Y., Lin, Z., Fan, E.,Yu, J., Stack,
S., Jeffrey, P., and Shi, Y., Structure of the protein phosphatase
2A holoenzyme, Cell 127, 1239–1251 (2006).
Chang, L. and Karin, M., Mammalian MAP kinase signaling cas-
cades, Nature 410, 37–40 (2001).
De Meyts, P., The insulin receptor: A prototype for dimeric,
allosteric membrane receptors? Trends Biochem. Sci. 33,
376–384 (2008).
Druker, B.J. and Lydon, N.B., Lessons learned from the develop-
ment of an Abl tyrosine kinase inhibitor for chronic myelogen-
ous leukemia, J. Clin. Invest. 105, 3–7 (2000).
Garcia, K.C. (Ed.), Cell Surface Receptors, Adv. Protein Chem. 68
(2004).
Griffith, J.P., Kim, J.L., Kim, E.E., Sintchak, M.D., Thomson, J.A.,
Fitzgibbon, M.J., Fleming, M.A., Caron, P.R., Hsiao, K., and
Navia, M.A., X-ray structure of calcineurin inhibited by the
immunophilin-immunosuppresant FKBP12-FK506 complex,
Cell 82, 507–522 (1995);and Huai,Q., Kim, H.-Y., Liu,Y., Zhao,
Y., Mondragon, A., Liu, J.O., and Ke, H., Crystal structure of
calcineurin–cylophilin–cyclosporin shows common but distinct
recognition of immunophilin–drug complexes, Proc. Natl.
Acad. Sci. 99, 12037–12042 (2002).
Groves, M.R., Hanlon, N., Turowski, P., Hemmings, B.A., and Bar-
ford, D., The structure of the protein phosphatase 2A PR65/A
subunit reveals the conformation of its 15 tandemly repeated
HEAT motifs, Cell 96, 99–110 (1999).
Hansen, G., et al.,The structure of the GM-CSF receptor complex
reveals a distinct mode of cytokine receptor activation, Cell
134, 496–507 (2008).
References 741
JWCL281_c19_671-743.qxd 6/4/10 10:57 AM Page 741