References 669
Dai, J.-B., Liu, Y., Ray, W.J., Jr., and Konno, M., The crystal struc-
ture of muscle phosphoglucomutase refined at 2.7-angstrom
resolution, J. Biol. Chem. 267, 6322–6337 (1992).
Gibbons, B.J., Roach,P.J., and Hurley,T.D., Crystal structure of the
autocatalytic initiator of glycogen biosynthesis, glycogenin,
J. Mol. Biol. 319, 463–477 (2002); and Hurley, T.D., Stout,
S., Miner, E., Zhou,J., and Roach, P.J., Requirements for catalysis
in mammalian glycogenin, J. Biol. Chem. 280, 23892–23899
(2005).
Johnson, L.N., Glycogen phosphorylase: Control by phosphoryla-
tion and allosteric effectors, FASEB J. 6, 2274–2282 (1992); and
Rabbit muscle glycogen phosphorylase b. The structural basis
of activation and catalysis, in Harding, J.J. and Crabbe, M.J.C.
(Eds.), Post-Translational Modifications of Proteins, pp. 81–151,
CRC Press (1993).
Johnson, L.N. and Barford, D., Glycogen phosphorylase, J. Biol.
Chem. 265, 2409–2412 (1990).
Madsen, N.B., Glycogen phosphorylase and glycogen synthetase,
in Kuby, S.A. (Ed.), A Study of Enzymes, Vol. II, pp. 139–158,
CRC Press (1991).
Meléndez-Hevia, E., Waddell, T.G., and Shelton, E.D., Optimiza-
tion of molecular design in the evolution of metabolism: The
glycogen molecule, Biochem. J. 295, 477–483 (1993).
Palm, D., Klein, H.W., Schinzel, R.S., Bucher, M., and Helmreich,
E.J.M., The role of pyridoxal 5¿-phosphate in glycogen phos-
phorylase catalysis, Biochemistry 29, 1099–1107 (1990).
Smythe, C. and Cohen, P., The discovery of glycogenin and the
priming mechanism for glycogen biosynthesis, Eur. J. Biochem.
200, 625–631 (1991).
Sprang, S.R., Acharya, K.R., Goldsmith, E.J., Stuart, D.I., Varvill,
K., Fletterick, R.J., Madsen, N.B., and Johnson, L.N., Structural
changes in glycogen phosphorylase induced by phosphoryla-
tion, Nature 336, 215–221 (1988).
Sprang, S.R., Withers, S.G., Goldsmith, E.J., Fletterick, R.J., and
Madsen, N.B., Structural basis for the activation of glycogen
phosphorylase b by adenosine monophosphate. Science 254,
1367–1371 (1991).
Calmodulin and Its Control of Glycogen Metabolism
Babu, Y.S., Sack, J.S., Greenough, T.J., Bugg, C.E., Means, A.R.,
and Cook, W.J., Three-dimensional structure of calmodulin,
Nature 315, 37–40 (1985).
Crivici, A. and Ikura, M., Molecular and structural basis of target
recognition by calmodulin, Annu. Rev. Biophys. Biomol. Struct.
25, 85–116 (1995).
Ikura, M., Clore, G.M., Gronenborn, A.M., Zhu, G., and Bax, A.,
Solution structure of a calmodulin-target peptide complex by
multidimensional NMR, Science 256, 632–638 (1992); and
Meador,W.E., Means, A.R., and Quiocho, F.A.,Target enzyme
recognition by calmodulin: 2.4 Å structure of a calmodulin-
peptide complex, Science 257, 1251–1255 (1992).
James, P., Vorherr, T., and Carafoli, E., Calmodulin-binding do-
mains: Just two faced or multifaceted? Trends Biochem. Sci. 20,
38–42 (1995).
Nakayama, S. and Kretsinger, R.H., Evolution of the EF-hand
family of proteins, Annu. Rev. Biophys. Biomol. Struct. 23,
473–507 (1994).
Protein Kinases and Protein Phosphatases
Bollen, M., Keppens, S., and Stalmans, W., Specific features of
glycogen metabolism in the liver,Biochem.J. 336, 19–31 (1998).
Bossemeyer, D., Engh, R.A., Kinzel, V., Ponstingl, H., and Huber,
R., Phosphotransferase and substrate binding mechanism of
the cAMP-dependent protein kinase catalytic subunit from
porcine heart as deduced from the 2.0 Å structure of the com-
plex with Mn
2
adenyl imidodiphosphate and inhibitor pep-
tide PKI (5–24), EMBO J. 12, 849–859 (1993).
Egloff, M.P., Johnson, D.F., Moorhead, G., Cohen, P.T.W., Cohen,
P., and Barford, D., Structural basis for the recognition of regu-
latory subunits by the catalytic subunit of protein phosphatase
1, EMBO J. 16, 1876–1887 (1997).
Goldberg, J., Huang, H., Kwon,Y., Greengard, P., Nairn, A.C., and
Kuriyan, J., Three-dimensional structure of the catalytic sub-
unit of protein serine/threonine phosphatase-1, Nature 376,
745–753 (1995).
Johnson, L.N., Lowe, E.D., Noble, M.E.M., and Owen, D.J., The
structural basis for substrate recognition and control by pro-
tein kinases, FEBS Lett. 430, 1–11 (1998).
Kim, C., Cheng, C.Y., Saldanha, S.A., and Taylor, S.S., PKA-I
holoenzyme structure reveals a mechanism for cAMP-
dependent activation, Cell 130, 1032–1043 (2007).
Kobe, B. and Kemp, B.E., Active site-directed protein regulation,
Nature 402, 373–376 (1999). [Discusses intrasteric regulation.]
Lowe, E.D., Noble, M.E.M., Skamnaki, V.T., Oikonomakos, N.G.,
Owen, D.J., and Johnson, L.N., The crystal structure of a phos-
phorylase kinase peptide substrate complex: Kinase substrate
recognition, EMBO J. 16, 6646–6658 (1997).
Manning, G., Whyte, D.B., Martinez, R., Hunter, T., and
Sundarsanum, S., The protein kinase complement of the
human genome, Science 298, 1912–1934 (2002).
Nordlie, R.C., Foster, J.D., and Lange, A.J., Regulation of glucose
production by the liver, Annu. Rev. Nutr. 19, 379–406 (1999).
Smith, C.M., Radzio-Andzelm, E., Akamine, M.P., Madhusudan,
and Taylor, S.S.,The catalytic subunit of cAMP-dependent pro-
tein kinase: Prototype for an extended network of communica-
tion, Prog. Biophys. Mol. Biol. 71, 313–341 (1999).
Su, Y., Dostmann, W.R.G., Herberg, F.W., Durick, K., Xuong, N.,
Ten Eyck, L., Taylor, S.S., and Varughese, K.I., Regulatory sub-
unit of protein kinase A: Structure of deletion mutant with
cAMP binding domains, Science 269, 807–813 (1995).
Taylor, S.S., Knighton, D.R., Zheng, J., Sowadski, J.M., Gibbs, C.S.,
and Zoller, M.J., A template for the protein kinase family,
Trends Biochem. Sci. 18, 84–89 (1993); and Taylor, S.S.,
Knighton, D.R., Zheng, J., Ten Eyck, L.F., and Sowadski, J.M.,
Structural framework for the protein kinase family, Annu.Rev.
Cell Biol. 8, 429–462 (1992).
Villafranca, J.E., Kissinger, C.R., and Parge, H.E., Protein serine/
threonine phosphatases, Curr. Opin. Biotech. 7, 397–402 (1996).
Glucose-6-Phosphatase, Glucokinase, and
PFK-2/FBPase-2
Cornish-Bowden, A. and Cárdenas, M.L., Hexokinase and “glu-
cokinase” in liver metabolism, Trends Biochem. Sci. 16,
281–282 (1991).
de la Iglesia, N., Mukhtar, M., Seoane,J., Guinovart, J.J., and Agius,
L.,The role of the regulatory protein of glucokinase in the glu-
cose sensory mechanism of the hepatocyte, J. Biol. Chem. 275,
10597–10603 (2000).
Iynedjian, P.B., Mammalian glucokinase and its gene, Biochem. J.
293, 1–13 (1993). [Reviews the function and control of gluco-
kinase.]
Okar, D.A., Manzano, À., Navarro-Sabatè, A., Riera, L., Bartrons,
R., and Lange, A.J., PFK-2/FBPase-2: maker and breaker of
the essential biofactor fructose-2,6-bisphosphate, Trends
Biochem. Sci. 26, 30–35 (2001).
Pilkis, S.J., 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase:
a metabolic signaling enzyme, Annu. Rev. Biochem. 64,
799–835 (1995).
Rousseau, G.G. and Hue, L., Mammalian 6-phosphofructo-2-
kinase/fructose-2,6-bisphosphatase: A bifunctional enzyme
JWCL281_c18_638-670.qxd 2/26/10 2:24 PM Page 669