catalytic triad and is a structural paradigm for two enzyme
families, Nature Struct. Biol. 3, 74–86 (1996).
Thoden, J.B., Kappock, T.J., Stubbe, J.A., and Holden, H.M.,
Three-dimensional structure of N
5
-carboxyaminoimidazole ri-
bonucleotide synthetase: A member of the ATP grasp protein
superfamily, Biochemistry 38, 15480–15492 (1999). [X-ray
structure of PurK.]
Toth, E.A. and Yeates, T.O., The structure of adenylosuccinate
lyase, an enzyme with dual activity in the de novo purine
biosynthetic pathway, Structure 8, 163–174 (2000).
Wang,W., Kappock,T.J., Stubbe,J.A., and Ealick, S.E., X-ray struc-
ture of glycinamide ribonucleotide synthetase from Es-
cherichia coli, Biochemistry 37, 15647–15662 (1998).
Zalkin, H. and Dixon, J.E., De novo purine nucleotide biosynthe-
sis, Prog. Nucleic Acid Res. Mol. Biol. 42, 259–285 (1992).
Pyrimidine Nucleotide Biosynthesis
Begley, T.P., Appleby, T.C., and Ealick, S.E., The structural basis for
the remarkable catalytic proficiency of orotidine 5¿-monophos-
phate decarboxylase, Curr. Opin. Struct. Biol. 10, 711–718 (2000).
Evans, D.R. and Guy, H.I., Mammalian pyrimidine biosynthesis:
Fresh insights into an ancient pathway, J. Biol. Chem. 279,
33035–33038 (2004).
Jones, M.E., Orotidylate decarboxylase of yeast and man, Curr.
Top. Cell Regul. 33, 331–342 (1992).
Liu, S., Neidhardt, E.A., Grossman, T.H., Ocain, T., and Clardy, J.,
Structures of human dihydroorotate dehydrogenase in com-
plex with antiproliferative agents, Structure 8, 25–33 (1999).
Miller,B.G.and Wolfenden,R.,Catalytic proficiency:The unusual case
of OMP decarboxylase, Annu. Rev. Biochem. 71, 847–885 (2002).
Scapin, G., Ozturk, D.H., Grubmeyer, C., and Sacchettini,J.C.,The
crystal structure of the orotate phosphoribosyltransferase
complexed with orotate and -
D-5-phosphoribosyl-1-
pyrophosphate, Biochemistry 34, 10744–10754 (1995).
Thoden, J.B., Phillips, G.N., Jr., Neal, T.M., Raushel, F.M., and
Holden, H.M., Molecular structure of dihydroorotase:A para-
digm for catalysis through the use of a binuclear center, Bio-
chemistry 40, 6989–6997 (2001).
Traut, T.W. and Jones, M.E., Uracil metabolism—UMP synthesis
from orotic acid or uridine and conversion of uracil to -alanine:
Enzymes and cDNAs, Prog. Nucleic Acid Res. Mol. Biol. 53,
1–78 (1996).
Synthesis of Deoxynucleotides
Carreras,C.W.and Santi,D.V.,The catalytic mechanism and structure
of thymidylate synthase, Annu. Rev. Biochem. 64, 721–762 (1995).
Eriksson, M., Uhlin, U., Ramaswamy, S., Ekberg, M., Regnström,
K., Sjöberg, B.-M., and Eklund, H., Binding of allosteric effec-
tors to ribonucleotide reductase protein R1: Reduction of ac-
tive site cysteines promotes substrate binding, Structure 5,
1077–1092 (1997).
Finer-Moore, J.S., Santi, D.V., and Stroud, R.M., Lessons and
conclusions from dissecting the mechanism of a bisubstrate
enzyme: thymidylate synthase mutagenesis, function, and
structure, Biochemistry 42, 248–256 (2003).
Kashlan, O.B., Scott, C.P., Lear, J.D., and Cooperman, B.S.,A com-
prehensive model for the allosteric regulation of mammalian
ribonuclease reductase. Functional consequences of ATP- and
dATP-induced oligomerization of the large subunit, Biochem-
istry 41, 462–474 (2002).
Knighton, D.R., Kan, C.-C., Howland, E., Janson, C.A., Hostom-
ska, Z., Welsh, K.M., and Matthews, D.A., Structure of and
kinetic channeling in bifunctional dihydrofolate reductase-
thymidylate synthase, Nature Struct. Biol. 1, 186–194 (1994).
Lennon, B.W.,Williams, J.R., Jr., and Ludwig, M.L.,Twists in catal-
ysis:Alternating conformations in Escherichia coli thioredoxin
reductase, Science 289, 1190–1194 (2000).
Logan, D.T.,Andersson, J., Sjöberg,B.-M., and Nordlund, P.,A gly-
cyl radical site in the crystal structure of a Class III ribonu-
cleotide reductase, Science 283, 1499–1504 (1999).
Matthews, D.A., Villafranca, J.E., Janson, C.A., Smith, W.W.,
Welsh, K., and Freer, S., Stereochemical mechanisms of action
for thymidylate synthase based on the X-ray structure of
the covalent inhibitory ternary complex with 5-fluoro-2¿-
deoxyuridylate and 5,10-methylenetetrahydrofolate, J. Mol.
Biol. 214, 937–948 (1990); and Hyatt, D.C., Maley, F., and
Montfort, W.R., Use of strain in a stereospecific catalytic
mechanism: Crystal structure of Escherichia coli thymidylate
synthase bound to FdUMP and methylenetetrahydrofolate,
Biochemistry 36, 4585–4594 (1997).
Mol, C.D., Harris, J.M., McIntosh, E.M., and Tainer, J.A., Human
dUTP pyrophosphatase: Uracil recognition by a hairpin and
active sites formed by three separate subunits, Structure 4,
1077–1092 (1996).
Nordlund, P. and Eklund, H., Structure and function of the
Escherichia coli ribonucleotide reductase protein R2, J. Mol.
Biol. 232, 123–164 (1993).
Nordlund, P. and Reichard, P., Ribonucleotide reductases, Annu.
Rev. Biochem. 75, 681–706 (2006).
Powis, G. and Montfort, W.R., Properties and biological activities
of thioredoxins, Annu. Rev. Biophys. Biomol. Struct. 30,
421–455 (2001).
Sintchak, M.D., Arjara, G., Kellog, B.A., Stubbe, J., and Drennan,
C.L.,The crystal structure of class II ribonucleotide reductase
reveals how an allosterically regulated monomer mimics a
dimer, Nature Struct. Biol. 9, 293–300 (2002).
Stubbe, J. and Riggs-Gelasco, P., Harnessing free radicals: Forma-
tion and function of the tyrosyl radical in ribonucleotide
reductase, Trends Biochem. Sci. 23, 438–443 (1998).
Stubbe, J., Ge, J., and Yee, C.S.,The evolution of ribonucleotide re-
duction revisited, Trends Biochem. Sci. 26, 93–99 (2001); and
Stubbe, J., Ribonucleotide reductases: The link between an
RNA and a DNA world, Curr. Opin. Struct. Biol. 10, 731–736
(2000).
Uhlin, U. and Eklund, H., Structure of ribonucleotide reductase
protein R1, Nature 370, 533–539 (1994).
Nucleotide Degradation
Enroth, C., Eger, B.T., Okamoto, K., Nishino, T., Nishino, T., and
Pai, E., Crystal structure of bovine milk xanthine dehydroge-
nase and xanthine oxidase: Structure based mechanism of con-
version, Proc. Natl.Acad. Sci. 97, 10723–10728 (2000).
Parkman, R., Weinberg, K., Crooks, G., Nolta, I., Kapoor, N., and
Kohn, D., Gene therapy for adenosine deaminase deficiency,
Annu. Rev. Med. 51, 33–47 (2000).
Wilson, D.K., Rudolph, F.B., and Quiocho, F.A., Atomic structure
of adenosine deaminase complexed with a transition-state ana-
log: Understanding catalysis and immunodeficiency mutations,
Science 252, 1278–1284 (1991); Wilson, D.K. and Quiocho, F.A.,
A pre-transition-state mimic of an enzyme: X-ray structure of
adenosine deaminase with bound 1-deazaadenosine and zinc-
activated water, Biochemistry 32, 1689–1694 (1993); and Crys-
tallographic observation of a trapped tetrahedral intermediate
in a metalloenzyme, Nature Struct. Biol. 1, 691–694 (1994).
Biosynthesis of Nucleotide Coenzymes
Belenky, P., Bogan, K.L., and Brenner, C., NAD
metabolism in
health and disease, Trends Biochem. Sci. 32, 12–19 (2007).
References 1141
JWCL281_c28_1107-1142.qxd 4/22/10 9:17 AM Page 1141