Newtonian model of mechanics
27
is
the two-dimensional jump of the function
12
(, )gx x at the point of discontinuity
()
() ()
12
,
kk
xx , = 1,2,...,kn.
Let
123
(, , )gx x x be a non-decreasing function with respect to each variable, defined
on a three-dimensional interval
Δ , and which verifies the inequality
)( )
)
Δ≡+++−++
3 123 1 12 23 3 12 23 3
,, , , , ,gx x x gx h x h x h gx x h x h
)
)
)
−+ +− + + + +
1123 3 11223 1123
,, , , ,,gx hxx h gx hx hx gx hx x
()
)
)
+++ +− ≥
12 23 123 3 123
,, ,, ,,0gx x h x gx x x h gx x x ,
>
123
,, 0hhh ;
(1.1.62)
if
123
(,, )
xxx is a continuous function on Δ , then the triple Stieltjes integral
()()
∫∫∫
123 3 123
,, D ,,fxx x gxx x
Δ
does exist. If the function
123
(, , )gx x x admits
continuous partial derivatives of third order, then the triple Stieltjes integral is reduced
to a
triple Riemann integral
()()
123 3 123
() , , D , ,Sfxxxgxxx
Δ
∫∫∫
()
123
() , ,Rfxxx
Δ
=
∫∫∫
)
′′
123
123 1 2 3
,, ddd
xxx
gxxxxxx.
(1.1.63)
Hence, in the above-mentioned conditions, one may pass directly from the Stieltjes
integral to the Riemann one, admitting the relation
()
)
′′
123
3123 123 123
D,, ,,ddd
xxx
gx x x g x x x x x x;
(1.1.64)
()
3123
D,,gx x x represents here the three-dimensional differential of the function
()
123
,,gx x x , while
)
′′′
123
123
,,
xxx
gxxx is the three-dimensional derivative of this
function. As in the case of the one- or two-dimensional Stieltjes integral, if
()
123
,,
xxx and
()
123
,,gx x x are distributions for which the product
()
123
,,
xxx
()
⋅
3123
D,,gx x x makes sense, then this interpretation is always possible. Introducing
the Heaviside function, one can show that
()
)
)
000 000
123 3 1 1 2 2 3 3 1 2 3
() , , D , , , ,S fxxx x xx xx x fxxx
Δ
θ −−−=
∫∫∫
,
(1.1.65)
where
()
123
,,
xxx is a continuous function on Δ . Let be now the function
()()
()
=
=+−−−
∑
() () ()
123 123 1 2 3
123
1
,, ,, , ,
n
kkk
k
k
gxxx gxxx gxxxxxxθ
,
(1.1.66)
where
k
g are constants, while
)
123
,,gx x x
is the continuous part of this function; one
may show that