4.1 A simple delay oscillation scheme (a = −1) . . . . . . . . . . . . 80
4.2 Variation of the simple delay model . . . . . . . . . . . . . . . . . 80
4.3 The delay logistic model . . . . . . . . . . . . . . . . . . . . . . . 81
4.4 Folds in the delay logistic model . . . . . . . . . . . . . . . . . . 82
4.5 A simple delay model (n = 15) . . . . . . . . . . . . . . . . . . . 83
4.6 Delay model (b = 2); a square pattern . . . . . . . . . . . . . . . . 85
4.7 Delay logistic model . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.8 Oscillations and limit cycles in delay logistic models . . . . . . . . 87
4.9 Chaotic attractors of a delay logistic model . . . . . . . . . . . . . 88
4.10 Chaotic attractors of the logistic delay model (m = 40) . . . . . . . 89
4.11 Comparing the Glass (A) and the logistic (B) delay models (m = 40) 90
4.12 The delay exponential model . . . . . . . . . . . . . . . . . . . . 91
4.13 Delay logistic and delay cosine H
´
enon variants . . . . . . . . . . . 92
4.14 Chaotic patterns of the delay cosine model . . . . . . . . . . . . . 93
4.15 Carpet-like forms . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.16 Carpet-like forms . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.17 Square-like forms . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.18 Irregular patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.19 Islands in the chaotic sea . . . . . . . . . . . . . . . . . . . . . . 96
4.20 Triangular islands . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.1 The H
´
enon map . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2 Orbits in the cosine H
´
enon model . . . . . . . . . . . . . . . . . . 102
5.3 Bifurcation forms in the cosine H
´
enon model . . . . . . . . . . . . 103
5.4 Higher-order bifurcations in the cosine H
´
enon model . . . . . . . . 104
5.5 A third-order delay model . . . . . . . . . . . . . . . . . . . . . . 105
5.6 A second-order delay model . . . . . . . . . . . . . . . . . . . . . 106
5.7 The order-2 delay model . . . . . . . . . . . . . . . . . . . . . . . 106
5.8 A complicated delay model . . . . . . . . . . . . . . . . . . . . . 106
5.9 A H
´
enon model with a logistic delay term . . . . . . . . . . . . . 107
5.10 A variation of the H
´
enon model . . . . . . . . . . . . . . . . . . . 108
5.11 An exponential variant of the H
´
enon model . . . . . . . . . . . . . 108
5.12 A 2-difference equations system . . . . . . . . . . . . . . . . . . . 109
5.13 A three-dimensional model . . . . . . . . . . . . . . . . . . . . . 110
5.14 The Holmes model (a = 2.765, b = −0.2) . . . . . . . . . . . . . . 110
5.15 The Holmes model (a = 2.4, b = 0.3) . . . . . . . . . . . . . . . . 111
5.16 The sine delay map (b = 0.3) . . . . . . . . . . . . . . . . . . . . 112
5.17 The sine delay model . . . . . . . . . . . . . . . . . . . . . . . . 112
5.18 The sine delay model for large b . . . . . . . . . . . . . . . . . . 113
5.19 The sine delay model for b = 1 . . . . . . . . . . . . . . . . . . . 114
5.20 The sine delay model (a = 0.1) . . . . . . . . . . . . . . . . . . . 114
6.1 The Arneodo model . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.2 A modified Arneodo model . . . . . . . . . . . . . . . . . . . . . 120
6.3 An autocatalytic attractor . . . . . . . . . . . . . . . . . . . . . . 121