11.7 Chaotic forms of a simple rotation-translation model . . . . . . . . 233
11.8 Attractors and attracting points in rotation-translation model . . . . 234
11.9 A rotation image following a Contopoulos-Bozis paper (approach-
ing galaxies) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
11.10 Comparing chaotic forms: rotation-reflection . . . . . . . . . . . . 236
11.11 A rotation-translation chaotic image . . . . . . . . . . . . . . . . 237
11.12 Chaotic forms for low relativistic speeds . . . . . . . . . . . . . . 239
11.13 Relativistic rotation-translation forms for medium and high rela-
tivistic speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
11.14 Relativistic rotation-translation forms for high relativistic speeds . 241
11.15 Non-relativistic chaotic images in the early period of a rotation-
translation process with b = 1 . . . . . . . . . . . . . . . . . . . . 242
11.16 Other relativistic chaotic images . . . . . . . . . . . . . . . . . . . 243
11.17 Various relativistic chaotic forms . . . . . . . . . . . . . . . . . . 243
11.18 Relativistic and initial chaotic images of a rotation-translation pro-
cess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
11.19 Two galaxy-like chaotic images . . . . . . . . . . . . . . . . . . . 245
11.20 Other relativistic chaotic images . . . . . . . . . . . . . . . . . . . 246
11.21 A relativistic chaotic image when b = 0.9 . . . . . . . . . . . . . . 246
11.22 A relativistic chaotic image when b = 0.9 . . . . . . . . . . . . . . 247
11.23 A galactic-like cluster . . . . . . . . . . . . . . . . . . . . . . . . 247
11.24 Relativistic reflection-translation . . . . . . . . . . . . . . . . . . 249
11.25 Rotating disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
11.26 Two-armed galaxies . . . . . . . . . . . . . . . . . . . . . . . . . 252
11.27 Two-armed galaxies . . . . . . . . . . . . . . . . . . . . . . . . . 252
11.28 Rotating particles under the influence of an attracting mass . . . . 255
11.29 Box-like paths of a two-armed spiral galaxy . . . . . . . . . . . . 256
11.30 An asymptotically stable chaotic attractor . . . . . . . . . . . . . . 256
11.31 Rotation speed vs. radius r . . . . . . . . . . . . . . . . . . . . . 257
11.32 Two attracting masses and the disk of rotating particles at time t = 0 259
11.33 Rotating disks with two attracting masses . . . . . . . . . . . . . . 259
11.34 Rotating disks with two attracting masses over a long time . . . . . 260
11.35 Chaotic attractors in the case of two unequal symmetric attracting
masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
11.36 Rotating disc at early times . . . . . . . . . . . . . . . . . . . . . 262
11.37 Multi-arm images . . . . . . . . . . . . . . . . . . . . . . . . . . 263
11.38 The effect of two perpendicularly attracting masses . . . . . . . . 264
12.1 The original H
´
enon-Heiles (y, ˙y) diagram . . . . . . . . . . . . . . 268
12.2 (y, ˙y) diagrams for the H
´
enon-Heiles system . . . . . . . . . . . . 269
12.3 A discrete analogue to the H
´
enon-Heiles system (E = 1/12) . . . . 270
12.4 The discrete H
´
enon-Heiles model . . . . . . . . . . . . . . . . . . 271
12.5 Discrete analogues to the H
´
enon-Heiles system . . . . . . . . . . . 271
12.6 Chaotic paths in the H
´
enon-Heiles system . . . . . . . . . . . . . 272
12.7 The H
´
enon-Heiles system . . . . . . . . . . . . . . . . . . . . . . 273