334 Chaotic Modelling and Simulation
Gauthier-Villars.
Poincar
´
e, H. (1899). Les m´ethodes nouvelles de la m´ecanique c´eleste, Volume 3.
Paris: Gauthier-Villars.
Poincar
´
e, H. (1905). Le¸cons de m´ecanique. Paris: Gauthier-Villars.
Poincar
´
e, H. (1908). Science et methode. Biblioteque Scientifique.
Pomeau, Y. and P. Manneville (1980). Intermittent transition to turbulence in dissi-
pative dynamical systems. Commun. Math. Phys. 74, 189–197.
Poznanski, K. Z. (1983). International diffusion of steel technologies. Time-lag and
the speed of diffusion. Technol. Forecast. Social Change 23, 305–323.
Prigogine, I. (1995). Why irreversibility? The formulation of classical and quantum
mechanics for nonintegrable systems. Int. J. of Bifurcation and Chaos 5(1), 3–16.
Prigogine, I. (1996). Time, chaos and the laws of nature. In P. Weingartner and
G. Schurz (Eds.), Law and prediction in the light of chaos research, Volume LNP
473, pp. 3–9. Berlin: Springer-Verlag.
Prigogine, I. (1997). Nonlinear science and the laws of nature. Int. J. of Bifurcation
and Chaos 7(9), 1917–1926.
Prigogine, I. and R. Lefever (1968). Symmetry breaking instabilities in dissipative
systems. II. J. Chem. Phys. 48, 1695–1700.
Prigogine, I., R. Lefever, A. Goldbeter, and M. Herschkowitz-Kaufman (1969). Sym-
metry breaking instabilities in biological systems. Nature 223, 913–916.
Procaccia, I. (1987). Exploring deterministic chaos via unstable periodic orbits,
Volume 2. Nucl. Phys.: proc. suppl.
Rabinovich, S., G. Berkolaiko, S. Buldyrev, A. Shehter, and S. Havlin (1997). An-
alytical solution of the logistic equation. Int. J. of Bifurcation and Chaos 7(4),
837–838.
Raha, N., J. A. Sellwood, R. A. James, and F. D. Kahn (1991). A dynamic instability
of bars in disk galaxies. Nature 352, 411–412.
Rayleigh, L. (1883a). On maintained vibrations. Phil. Mag. 15, 229–235.
Rayleigh, L. (1883b). On the crispations of fluid resting upon a vibrating support.
Phil. Mag. 16, 50–58.
Rayleigh, L. (1887). On the maintenance of vibrations by forces of double frequency,
and on the propagation of waves through a medium endowed with a period struc-
ture. Phil. Mag. 24, 145–159.
Rayleigh, L. (1891). On the problem of random vibrations, and of random flights in
one, two, or three dimensions. Phil. Mag. 37, 321.